Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
2.2. Sampling and Eligibility Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Quality of Air and Deforestation
4.2. Territorial Variables Affecting the COVID-19 Crisis in Amazonas State
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (Covid-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 15 July 2021).
- The Lancet. COVID-19 in Brazil: “So what?”. Lancet 2020, 395, 1461. [Google Scholar] [CrossRef]
- University of Miami. COVID-19 Observatory. Public Polity Adoption Index in Brazil. Available online: http://observcovid.miami.edu/brazil/ (accessed on 22 June 2021).
- Hallal, P.C.; Hartwig, F.P.; Horta, B.L.; Silveira, M.F.; Struchiner, C.J.; Vidaletti, L.P.; Neumann, N.A.; Pellanda, L.C.; Dellagostin, O.A.; Burattini, M.N.; et al. SARS-CoV-2 antibody prevalence in Brazil: Results from two successive nationwide serological household surveys. Lancet. Glob. Health 2020, 8, e1390–e1398. [Google Scholar] [CrossRef]
- Governo do Estado do Amazonas. Boletim diário COVID-19 No Amazonas 22/7/2020. Available online: http://www.fvs.am.gov.br/media/publicacao/22_07_20_BOLETIM_DI%C3%81RIO_DE_CASOS_COVID-19_1.pdf (accessed on 23 July 2020).
- Buss, L.F.; Prete, C.A., Jr.; Abrahim, C.; Mendrone, A., Jr.; Salomon, T.; de Almeida-Neto, C.; França, R.; Belotti, M.C.; Carvalho, M.; Costa, A.G.; et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 2021, 371, 288–292. [Google Scholar] [CrossRef]
- Ribeiro, S.P.; Castro e Silva, A.; Dáttilo, W.; Reis, A.B.; Góes-Neto, A.; Alcantara, L.; Giovanetti, M.; Coura-Vital, W.; Fernandes, G.W.; Azevedo, V. Severe airport sanitarian control could slow down the spreading of COVID-19 pandemics in Brazil. PeerJ 2020, 8, 9446. [Google Scholar] [CrossRef]
- Movimento de Passageiros No Aeroporto de Manaus Cresce e Chega a 3 Milhões. Available online: https://amazonasatual.com.br/movimento-de-passageiros-no-aeroporto-de-manaus-cresce-e-chega-a-3-milhoes/ (accessed on 22 June 2021).
- Ministério da Economia. Zona Franca de Portas Abertas. Available online: https://www.gov.br/suframa/pt-br/zfm/zona-franca-de-portas-abertas (accessed on 22 June 2021).
- Amazonastur. Programa de Infraestrutura Turística. Available online: http://www.amazonastur.am.gov.br/programas-e-acoes/ (accessed on 15 July 2021).
- Jacobs, W.; Pegler, L.; Reis, M.; Pereira, H. Amazon shipping, commodity flows and urban economic development: The case of Belém and Manaus. Cad. Metrop. 2013, 15, 389–410. [Google Scholar] [CrossRef] [Green Version]
- Santos, R. Com 13 Novos Casos, Amazonas Tem 67 Pessoas Infectadas Pelo Novo Coronavírus—Secretaria de Estado de Saúde do Amazonas. 2020. Available online: http://www.saude.am.gov.br/visualizar-noticia.php?id=4375.Portuguese (accessed on 20 July 2021).
- Meneses-Navarro, S.; Freyermuth-Enciso, M.G.; Pelcastre-Villafuerte, B.E.; Campos-Navarro, R.; Meléndez-Navarro, D.M.; Gómez-Flores-Ramos, L. The challenges facing indigenous communities in Latin America as they confront the COVID-19 pandemic. Int. J. Equity Health 2020, 19, 63. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados. Available online: https://www.ibge.gov.br/cidades-e-estados (accessed on 18 June 2021).
- Rocha, R.; Atun, R.; Massuda, A.; Rache, B.; Spinola, P.; Nunes, L.; Lago, M.; Castro, M.C. Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: A comprehensive analysis. Lancet. Glob. Health 2021, 9, e782–e792. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Sordillo, E.M.; Gotuzzo, E.; Zavaleta, C.; Caplivski, D.; Navarro, J.C.; Crainey, J.L.; Bessa Luz, S.L.; Noguera, L.; Schaub, R.; et al. SARS-CoV-2 in the Amazon region: A harbinger of doom for Amerindians. PLoS Negl. Trop. Dis. 2020, 14, e0008686. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.; Chen, J.M.; Stark, S.C.; Berenguer, E.; Moutinho, P.; Artaxo, P.; Anderson, L.O.; Aragão, L. Smoke pollution’s impacts in Amazonia. Science 2020, 369, 634–635. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Universityimore (MD): The University. Dashboard by the Center for Systems Science and Engineering (CSSE). Available online: https://coronavirus.jhu.edu/map.htm (accessed on 10 April 2021).
- Marlier, M.E.; Bonilla, E.X.; Mickley, L.J. How do Brazilian fires affect air pollution and public health? Geohealth 2020, 4, e2020GH000331. [Google Scholar] [CrossRef]
- Fellows, M.; Paye, V.; Alencar, A.; Nicácio, M.; Castro, I.; Coelho, M.E.; Silva, C.; Bandeira, M.; Lourival, R.; Basta, P.C. Under-reporting of COVID-19 cases among indigenous peoples in Brazil: A new expression of old inequalities. Front. Psychiatry 2021, 12, 638359. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Painel Coronavírus. Available online: https://covid.saude.gov.br/ (accessed on 7 November 2021).
- Naveca, F.G.; Nascimento, V.; de Souza, V.C.; Corado, A.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 2021, 27, 1230–1238. [Google Scholar] [CrossRef]
- Panamerican Health Organization. COVID Daily Update. Available online: https://iris.paho.org/bitstream/handle/10665.2/54468/COVID-19DailyUpdate30June2021_eng.pdf?sequence=1&isAllowed= (accessed on 30 June 2021).
- Valbuena-Garcia, A.M.; Rodriguez-Villamizar, L.A. Análisis espacial en epidemiología: Revisión de métodos. Rev. Univ. Ind. Santander. Salud 2018, 50, 358–365. [Google Scholar]
- Cesar, A.E.M.; Daboin, B.E.G.; Morais, T.C.; Portugal, I.; Echeimberg, J.O.; Rodrigues, L.M.R.; Jacintho, L.C.; Raimundo, R.D.; Elmusharaf, K.; Siqueira, C.E. Analysis of COVID-19 mortality and case-fatality in a low- income region: An ecological time-series study in Tocantins, Brazilian Amazon. J. Hum. Growth. Dev. 2021, 31, 496–506. [Google Scholar] [CrossRef]
- Guarnieri, C.S.; Sousa, L.V.A.; Paiva, L.S.; Morais, T.C.; Ribeiro, M.A.L.; Ribeiro, M.R.; Monteiro, C.B.M. COVID-19 mortality and lethality in the State of Pará, legal Amazon, Brazil. J. Hum. Growth Dev. 2021, 31, 398–404. [Google Scholar] [CrossRef]
- Lima, D.L.; Morais, T.C.; Daboin, B.G.; Cavalcanti, M.P.E.; Mesaroch, A.; Silva, H.M.R.; Silva, C.G.; Monteiro, C.B.M.; Abreu, L.C. Epidemiological perspective of the evolution of the COVID-19 pandemic in Amapá State, Northern Brazil. J. Hum. Growth Dev. 2021, 31, 414–424. [Google Scholar] [CrossRef]
- Valenzuela, E.V.; Morais, T.C.; Daboin, B.G.; Cavalcanti, M.P.E.; Portugal, I.B.M.; Souza, I.S.S.; Ribeiro, M.A.L.; Monteiro, C.B.M.; Abreu, L.C. Evolution of mortality and lethality due to COVID-19 in the State of Roraima, Brazil, from March 2020 to July 2021. J. Hum. Growth Dev. 2021, 31, 447–457. [Google Scholar] [CrossRef]
- De Abreu, L.C.; Elmusharaf, K.; Siqueira, C.E.G. A time-series ecological study protocol to analyze trends of incidence, mortality, lethality of COVID-19 in Brazil. J Hum Growth Dev. 2021, 31, 495–499. [Google Scholar]
- Secretaria de Saude do Estado de Amazonas. Painel Covid-19 Amazonas. Available online: http://saude.am.gov.br/painel/corona/ (accessed on 20 April 2021).
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. Available online: https://icd.who.int/browse10/2019/en#/U04 (accessed on 20 June 2021).
- Datasus. Informações de Saúde (TABNET)—Demográficas e Socioeconômicas—População Residente. 2021. Available online: http://www2.datasus.gov.br/DATASUS/index.php?area=0206&id=6942 (accessed on 20 June 2021).
- Antunes, J.L.F.; Cardoso, M.R.A. Uso da análise de séries temporais em estudos epidemiológicos. Epidemiol. Serv. Saúde 2015, 24, 565–576. [Google Scholar] [CrossRef]
- Cori, A.; Ferguson, N.M.; Fraser, C.; Cauchemez, S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 2013, 178, 1505–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, R.N.; Stockwin, J.E.; van Gaalen, R.D.; Polonsky, J.A.; Kamvar, Z.N.; Demarsh, P.A.; Dahlqwist, E.; Li, S.; Miguel, E.; Jombart, T.; et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019, 29, 100356. [Google Scholar] [CrossRef]
- Ali, S.T.; Yeung, A.; Shan, S.; Wang, L.; Gao, H.; Du, Z.; Xu, X.K.; Wu, P.; Lau, E.; Cowling, B.J. Serial intervals and case isolation delays for COVID-19: A systematic review and meta-analysis. Clin. Infect. Dis. 2021, ciab49. [Google Scholar] [CrossRef]
- Prete, C.A.; Buss, L.; Dighe, A.; Porto, V.B.; da Silva Candido, D.; Ghilardi, F.; Pybus, O.G.; de Oliveira, W.K.; Croda, J.H.R.; Sabino, E.C.; et al. Serial interval distribution of SARS-CoV-2 infection in Brazil. J. Travel Med. 2021, 28, 115. [Google Scholar] [CrossRef]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.; Prete, C.A.; Crispim, M., Jr.; Fraiji, N.A.; Pereira, R.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef]
- Fiocruz 2020. Observatorio COVID-19 -Boletim—Um Balanço da Pandemia 2020. Available online: https://portal.fiocruz.br/documento/boletim-do-observatorio-covid-19-edicao-especial-faz-balanco-da-pandemia-no-brasil-em-2020 (accessed on 22 June 2021).
- Ferrante, L.; Livas, S.; Steinmetz, W.A.; Almeida, A.; Leão, J.; Vassão, R.C.; Tupinambás, U.; Fearnside, P.M.; Duczmal, L.H. The first case of immunity loss and SARS-CoV-2 reinfection by the same virus lineage in Amazonia. J. Racial. Ethn. Health Disparities 2021, 8, 821–823. [Google Scholar] [CrossRef]
- Galvão, T.F.; Tiguman, G.M.B.; Caicedo, R.M.; Silva, M.T. Inequity in utilizing health services in the Brazilian Amazon: A population-based survey, 2015. Int. J. Health Plan. Manag. 2019, 34, e1846-53. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Pereira, M.; Rizzo, L.V.; Chong-Neto, H.J.; Solé, D. Impact of exposure to smoke from biomass burning in the Amazon rain forest on human health. J. Bras. Pneumol. 2021, 47, e20210219. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Luisetto, M.; Naseer, A.; Khaled, E.; Fiazza, C.; Ahmed Yesvi, R.; Ghulam, R.; Latishev, O. Research article deforestation, air pollution and Brazilian COVID-19. JCIM 2021, 2, 1–19. [Google Scholar]
- Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.; Van der Werf, G. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). JGR Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Morton, D.C.; Jin, Y.; Collatz, G.J.; Kasibhatla, P.S.; van der Werf, G.R.; DeFries, R.S.; Randerson, J.T. Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Manag. 2013, 4, 617–638. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.; AghaKouchak, A.; Randerson, J. Unraveling the role of temperature and rainfall on active fires in the Brazilian Amazon using a nonlinear poisson model. JGR Biogeosci. 2018, 123, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Butt, E.W.; Conibear, L.; Knote, C.; Spracklen, D.V. Large air quality and public health impacts due to Amazonian deforestation fires in 2019. GeoHealth 2021, 5, e2021GH000429. [Google Scholar] [CrossRef]
- Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G.B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D.V. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 2016, 6, 37074. [Google Scholar] [CrossRef] [Green Version]
- Kiely, L.; Spracklen, D.; Wiedinmyer, C.; Conibear, L.; Reddington, C.; Arnold, S.; Knote, C.; Md Khan, F.; Latif, M.; Syaufina, L.; et al. Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Env. Res. Lett. 2020, 15, 094054. [Google Scholar] [CrossRef]
- Onder G, Rezza G, Brusaferro, S. Case-fatality rate and characteristics of patients dying with COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Pachiega, J.; Afonso, A.; Sinhorin, G.T.; Alencar, B.T.; Araújo, M.; Longhi, F.G.; Zanetti, A.; Espinosa, O.A. Chronic heart diseases as the most prevalent comorbidities among deaths by COVID-19 in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e45. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.R.; Beckedorff, O.A.; de Góes Cavalcanti, L.P.; Siqueira, A.M.; de Castro, D.B.; da Costa, C.F.; Queiróz Lemos, D.R.; Barros, E.N.C. The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and sex profile of COVID-19 mortality: A population based ecological study. Lancet Reg. Health Am. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Fundação de Vigilância em Saúde do Amazonas. Boletim Diário de Covid-19 n. 482. Available online: http://www.amazonas.am.gov.br/2021/07/cenario-epidemiologico-da-covid-19-no-amazonas-e-divulgado-pela-fvs-rcp-nesta-sexta-feira-3007/ (accessed on 20 July 2021).
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Castro, M.C.; Gurzenda, S.; Turra, C.M.; Kim, S.; Andrasfay, T.; Goldman, N. Reduction in life expectancy in Brazil after COVID-19. Nat. Med. 2021, 27, 1629–1635. [Google Scholar] [CrossRef]
- Leal-Neto, O.B.; Santos, F.; Lee, J.Y.; Albuquerque, J.O.; Souza, W.V. Prioritizing COVID-19 tests based on participatory surveillance and spatial scanning. Int. J. Med. Inf. 2020, 143, 104263. [Google Scholar] [CrossRef] [PubMed]
- Secretaria Municipal de Saúde. Plano Municipal de Operacionalização da Vacinação Contra a COVID-19. Available online: https://semsa.manaus.am.gov.br/wp-content/uploads/2021/01/PROPOSTA-COVID-181220-versa%CC%83o-1.1-1.pdf (accessed on 20 August 2021).
- Covid-19: Over 60% of Indigenous People with More Than 18 Years Old Were Vaccinated. Available online: https://agenciabrasil.ebc.com.br/saude/noticia/2021-02/covid-19-60-dos-indigenas-maiores-de-18-anosja-receberam-vacina (accessed on 15 March 2021).
- França, E.B.; Ishitani, L.H.; Teixeira, R.A.; Abreu, D.; Corrêa, P.; Marinho, F.; Vasconcelos, A. Deaths due to COVID-19 in Brazil: How many are there and which are being identified? Rev. Bras. Epidemiol. 2020, 23, e200053. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.; Marrero, L.; Horta, B.L. Excess deaths from respiratory causes in eight Brazilian metropolises during the first six months of the COVID-19 pandemic. Cad. Saude Publica 2020, 37, e00328720. [Google Scholar] [CrossRef]
- Asociacion Brasileira de Medicina Ortomolecular. Qual Poderia Ser a Maior Causa de Mortalidade Associada à Covid-19? Available online: http://ambo.com.br/qual-poderia-ser-a-maior-causa-de-mortalidade-associada-a-covid-19/ (accessed on 29 October 2021).
- Penna, G.; Pinto, L.F.; Soranz, D.; Glatt, R. High incidence of diseases endemic to the Amazon region of Brazil, 2001–2006. Emerg. Infect. Dis. 2009, 15, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Emergencia Indigena. Dados Covid-19. Available online: https://emergenciaindigena.apiboficial.org/dados_covid19/ (accessed on 22 June 2021).
- Ministry of Health. Boletim Epidemiológico Especial. Doença do Coronavírus COVID-19—Semana Epidemiológica 8 (21 a 27/2/2021). Available online: https://www.gov.br/saude/pt-br/media/pdf/2021/marco/05/boletim_epidemiologico_covid_52_final2.pdf (accessed on 22 June 2021).
- Quental, K.N.; Leite, A.L.; Feitosa, A.D.N.A.; Oliveira, Z.N.P.; Tavares, L.V.S.; Tavares, W.G.S.; Pinheiro, E.F.; Lacsina, J.R.; DeSouza-Vieira, T.; Silva, J.B.N.F. SARS-CoV-2 co-infection with dengue virus in Brazil: A potential case of viral transmission by a health care provider to household members. Travel Med. Infect. Dis. 2021, 40, 1–3. [Google Scholar] [CrossRef]
Municipality | Cases | Deaths | ||
---|---|---|---|---|
n | % | n | % | |
Alvarães | 2199 | 0.55 | 38 | 0.28 |
Amaturá | 1227 | 0.31 | 17 | 0.13 |
Anamã | 1443 | 0.36 | 9 | 0.07 |
Anori | 1976 | 0.50 | 40 | 0.30 |
Apuí | 1408 | 0.35 | 31 | 0.23 |
Atalaia do Norte | 2737 | 0.69 | 13 | 0.10 |
Autazes | 3366 | 0.85 | 99 | 0.74 |
Barcelos | 3662 | 0.92 | 64 | 0.48 |
Barreirinha | 2444 | 0.62 | 64 | 0.48 |
Benjamin Constant | 3499 | 0.88 | 93 | 0.69 |
Beruri | 1580 | 0.40 | 33 | 0.25 |
Boa vista do Ramos | 1029 | 0.26 | 15 | 0.11 |
Boca do Acre | 2708 | 0.68 | 24 | 0.18 |
Borba | 2393 | 0.60 | 66 | 0.49 |
Caapiranga | 618 | 0.16 | 21 | 0.16 |
Canutama | 1035 | 0.26 | 10 | 0.07 |
Carauari | 4979 | 1.25 | 54 | 0.40 |
Careiro | 3949 | 1.00 | 84 | 0.63 |
Careiro da Várzea | 2587 | 0.65 | 21 | 0.16 |
Coari | 9400 | 2.37 | 226 | 1.68 |
Codajás | 3006 | 0.76 | 21 | 0.16 |
Envira | 3347 | 0.84 | 11 | 0.08 |
Eurinepé | 3857 | 0.97 | 33 | 0.25 |
Fonte Boa | 2726 | 0.69 | 35 | 0.26 |
Guajará | 1577 | 0.40 | 25 | 0.19 |
Humaitá | 7761 | 1.96 | 103 | 0.77 |
Ipixuna | 4458 | 1.12 | 20 | 0.15 |
Iranduba | 7510 | 1.89 | 166 | 1.24 |
Itacoatiara | 9818 | 2.47 | 361 | 2.69 |
Itamarati | 589 | 0.15 | 7 | 0.05 |
Itapiranga | 3091 | 0.78 | 39 | 0.29 |
Japurá | 1045 | 0.26 | 11 | 0.08 |
Juruá | 1114 | 0.28 | 18 | 0.13 |
Jutaí | 1843 | 0.46 | 28 | 0.21 |
Lábrea | 3257 | 0.82 | 82 | 0.61 |
Manacapuru | 12,447 | 3.14 | 398 | 2.97 |
Manaquiri | 1582 | 0.40 | 44 | 0.33 |
Manaus | 186,509 | 47.01 | 9186 | 68.45 |
Manicoré | 4798 | 1.21 | 93 | 0.69 |
Maraã | 2206 | 0.56 | 30 | 0.22 |
Maués | 4508 | 1.14 | 136 | 1.01 |
Nhamundá | 1821 | 0.46 | 33 | 0.25 |
Nova olinda do Norte | 1598 | 0.40 | 70 | 0.52 |
Novo Airão | 2552 | 0.64 | 28 | 0.21 |
Novo Aripuanã | 1245 | 0.31 | 25 | 0.19 |
Parintins | 15,176 | 3.82 | 327 | 2.44 |
Pauini | 2298 | 0.58 | 22 | 0.16 |
Presidente Figueiredo | 5879 | 1.48 | 113 | 0.84 |
Rio Preto da Eva | 4254 | 1.07 | 80 | 0.60 |
Santa Isabel do Rio Negro | 2262 | 0.57 | 46 | 0.34 |
Santo Antônio do Içá | 2178 | 0.55 | 54 | 0.40 |
São Gabriel da Cachoeira | 7846 | 1.98 | 107 | 0.80 |
São Paulo de Olivença | 4095 | 1.03 | 71 | 0.53 |
São Sebastião do Uatumã | 1074 | 0.27 | 20 | 0.15 |
Silves | 1438 | 0.36 | 20 | 0.15 |
Tabatinga | 2831 | 0.71 | 130 | 0.97 |
Tapauá | 1506 | 0.38 | 11 | 0.08 |
Tefé | 8670 | 2.19 | 245 | 1.83 |
Tonantins | 1024 | 0.26 | 25 | 0.19 |
Uarini | 1868 | 0.47 | 29 | 0.22 |
Urucará | 2795 | 0.70 | 56 | 0.42 |
Urucurituba | 3072 | 0.77 | 39 | 0.29 |
Without municipality identification | 2 | 0.00 | 0 | 0.00 |
Total | 396,772 | 100.00 | 13,420 | 100.00 |
Comorbidity | Cases | Deaths | ||
---|---|---|---|---|
n | % | n | % | |
Chronic obstructive pulmonary disease | 5833 | 6.78 | 545 | 3.98 |
Cardiovascular disease | 21,502 | 24.98 | 3948 | 28.84 |
Obesity | 3887 | 4.52 | 768 | 5.61 |
Down’s syndrome | 942 | 1.09 | 46 | 0.34 |
Hematologic disease | 238 | 0.28 | 97 | 0.71 |
Immunodepressants | 28,391 | 32.98 | 268 | 1.96 |
Neurological disease | 716 | 0.83 | 396 | 2.89 |
Kidney disease | 1462 | 1.70 | 565 | 4.13 |
Liver disease | 236 | 0.27 | 125 | 0.91 |
Diabetes | 16,140 | 18.75 | 3471 | 25.35 |
Other comorbidities | 6735 | 7.82 | 3462 | 25.29 |
Total | 86,082 | 100.00 | 13,691 | 100.00 |
Analysis | ρ (CI 95%) | Freedom Grades | Statistics S | p-Value |
---|---|---|---|---|
Rt x case fatality | −0.334 (−0.412: −0.240) | 457 | 21,503,589 | <0.001 |
Rt x New cases | 0.264 (0.170: 0.349) | 457 | 11,864,418 | <0.001 |
Rt x Deaths | −0.076 (−0.163: 0.016) | 457 | 17,340,448 | 0.104 |
Wave | Date | New Cases (n) | Deaths (n) | Case Fatality (%) | Mortality Rate (per 100,000 Inhabitants) | Incidence Rate (per 100,000 Inhabitants) |
---|---|---|---|---|---|---|
1st wave | March | 3734 | 4 | 0.11 | 0.09 | 88.06 |
April | 26,121 | 1252 | 4.79 | 29.53 | 616.03 | |
May | 38,583 | 1612 | 4.18 | 38.02 | 909.93 | |
June | 27,075 | 522 | 1.93 | 12.31 | 638.53 | |
July | 23,196 | 325 | 1.40 | 7.66 | 547.05 | |
August | 17,290 | 265 | 1.53 | 6.25 | 407.76 | |
September | 21,598 | 263 | 1.22 | 6.20 | 509.36 | |
2nd wave | October | 19,747 | 397 | 2.01 | 9.36 | 465.71 |
November | 18,456 | 341 | 1.85 | 8.04 | 435.26 | |
December | 33,572 | 532 | 1.58 | 12.55 | 791.75 | |
January | 75,037 | 3640 | 4.85 | 85.84 | 1769.65 | |
February | 34,334 | 2254 | 6.56 | 53.16 | 809.72 | |
March | 23,909 | 925 | 3.87 | 21.81 | 563.86 | |
April | 13,620 | 530 | 3.89 | 12.50 | 321.21 | |
May | 11,868 | 311 | 2.62 | 7.33 | 279.89 | |
June | 8632 | 247 | 2.86 | 5.83 | 203.57 | |
Total | March 2020 to June 2021 | 396,772 | 13,420 | 3.38 | 316.49 | 9357.37 |
Period | DPC (CI 95%) Case Fatality | p | Fatality Trends | DPC (CI 95%) Mortality | p | Mortality Trend | DPC (IC 95%) Incidence | p | Incidence Trend |
---|---|---|---|---|---|---|---|---|---|
1st wave | −0.50 (−0.80; −0.20) | 0.001 | Decreasing | 0.96 (−0.54; 2.48) | 0.208 | Flat | 0.62 (0.12; 1.11) | 0.014 | Increasing |
2nd wave | 0.22 (0.03; 0.41) | 0.022 | Increasing | −0.20 (−0.81; 0.42) | 0.534 | Flat | −0.42 (−0.68; −0.17) | 0.001 | Decreasing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daboin, B.E.G.; Bezerra, I.M.P.; Morais, T.C.; Portugal, I.; Echeimberg, J.d.O.; Cesar, A.E.M.; Cavalcanti, M.P.E.; Jacintho, L.C.; Raimundo, R.D.; Elmusharaf, K.; et al. Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin. Int. J. Environ. Res. Public Health 2022, 19, 1153. https://doi.org/10.3390/ijerph19031153
Daboin BEG, Bezerra IMP, Morais TC, Portugal I, Echeimberg JdO, Cesar AEM, Cavalcanti MPE, Jacintho LC, Raimundo RD, Elmusharaf K, et al. Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin. International Journal of Environmental Research and Public Health. 2022; 19(3):1153. https://doi.org/10.3390/ijerph19031153
Chicago/Turabian StyleDaboin, Blanca Elena Guerrero, Italla Maria Pinheiro Bezerra, Tassiane Cristina Morais, Isabella Portugal, Jorge de Oliveira Echeimberg, André Evaristo Marcondes Cesar, Matheus Paiva Emidio Cavalcanti, Lucas Cauê Jacintho, Rodrigo Daminello Raimundo, Khalifa Elmusharaf, and et al. 2022. "Deciphering Multifactorial Correlations of COVID-19 Incidence and Mortality in the Brazilian Amazon Basin" International Journal of Environmental Research and Public Health 19, no. 3: 1153. https://doi.org/10.3390/ijerph19031153