Micronutrient Deficiency as a Confounder in Ascertaining the Role of Obesity in Severe COVID-19 Infection
Abstract
:1. Introduction
2. Micronutrients and Severity of Respiratory Infections
2.1. Vitamin D
2.2. Vitamin A
2.3. Vitamin C
2.4. Zinc
3. Intersection of Obesity and Micronutrient Deficiencies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hendren, N.S.; de Lemos, J.A.; Ayers, C.; Das, S.R.; Rao, A.; Carter, S.; Rosenblatt, A.; Walchok, J.G.; Omar, W.; Khera, R.; et al. Association of Body Mass Index and Age with Morbidity and Mortality in Patients Hospitalized with COVID-19: Results From the American Heart Association COVID-19Cardiovascular Disease Registry. Circulation 2021, 143, 135–144. [Google Scholar] [CrossRef]
- Almond, M.H.; Edwards, M.R.; Barclay, W.S.; Johnston, S.L. Obesity and Susceptibility to Severe Outcomes Following Respiratory Viral Infection. Thorax 2013, 68, 684–686. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Sherry, B.; Njai, R.; Blanck, H.M. Food Insecurity Is Associated with Obesity among US Adults in 12 States. J. Acad. Nutr. Diet. 2012, 112, 1403–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, C.A.; Mire, E.F.; Katzmarzyk, P.T. Trends in Adiposity and Food Insecurity Among US Adults. JAMA Netw. Open 2020, 3, e2012767. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H. Significant Correlations of SARS-CoV-2 Infection with Prevalence of Overweight/Obesity and Mean Body Mass Index in the SARS-CoV-2 Endemic Countries. Cardiol. Res. 2020, 11, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Aronow, W.S.; Frishman, W.H. COVID-19 and Cardiometabolic Disease. Cardiol. Rev. 2021. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef] [Green Version]
- Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; et al. Phenotypic Characteristics and Prognosis of Inpatients with COVID-19 and Diabetes: The CORONADO Study. Diabetologia 2020, 63, 1500–1515. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Chen, F.; Wang, T.; Luo, F.; Liu, X.; Wu, Q.; He, Q.; Wang, Z.; Liu, Y.; Liu, L.; et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care 2020, 43, 1392–1398. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Bailey, Z.D.; Krieger, N.; Agénor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural Racism and Health Inequities in the USA: Evidence and Interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- Marmot, M. Achieving Health Equity: From Root Causes to Fair Outcomes. Lancet 2007, 370, 1153–1163. [Google Scholar] [CrossRef]
- Norris, K.C.; Beech, B.M. Social Determinants of Kidney Health: Focus on Poverty. CJASN 2021, 16, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Finch, W.H.; Hernández Finch, M.E. Poverty and COVID-19: Rates of Incidence and Deaths in the United States During the First 10 Weeks of the Pandemic. Front. Sociol. 2020, 5, 47. [Google Scholar] [CrossRef]
- Marshall, R. Back to Shared Prosperity: The Growing Inequality of Wealth and Income; Routledge: Oxfordshire, UK, 2015. [Google Scholar]
- World Bank. Monitoring Global Poverty: Report of the Commission on Global Poverty; World Bank: Washington, DC, USA, 2017; ISBN 978-1-4648-0961-3. [Google Scholar]
- Pickett, K.; Wilkinson, R. The Spirit Level: Why Equality Is Better for Everyone; Penguin Books Limited: London, UK, 2010; ISBN 978-0-14-192115-0. [Google Scholar]
- Poverty Rate by Race/Ethnicity. KFF 2020. Published 23 October 2020. Available online: https://www.kff.org/other/state-indicator/poverty-rate-by-raceethnicity/ (accessed on 22 November 2021).
- County of Los Angeles OurCounty Equity Dashboard. Available online: https://data.lacounty.gov/stories/s/OurCounty-Equity-Dashboard/pv5u-rgrh/ (accessed on 26 November 2021).
- The Impact of Coronavirus on Food Insecurity|Feeding America. Available online: https://www.feedingamerica.org/research/coronavirus-hunger-research (accessed on 4 December 2020).
- Affordability & Prosperity Report; USC Dornsife Center for Economic and Social Research: Los Angeles, CA, USA, 2021; p. 23. Available online: https://cesr.usc.edu/sites/default/files/Affordability_Wave1_Report.pdf (accessed on 13 March 2021).
- Over 100,000 Small Businesses Have Closed Forever as America’s Pandemic Toll Escalates-The Washington Post. Available online: https://www.washingtonpost.com/business/2020/05/12/small-business-used-define-americas-economy-pandemic-could-end-that-forever/ (accessed on 4 December 2020).
- Map: Coronavirus and School Closures in 2019–2020-Education Week. Published online 6 March 2020. Available online: https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html (accessed on 4 December 2020).
- Medina, Jennifer In Los Angeles, Teachers and Students Struggle with ‘No Human Contact’-The New York Times. Available online: https://www.nytimes.com/2021/01/21/us/coronavirus-schools-los-angeles-california.html (accessed on 2 March 2021).
- “Children Are Going Hungry”: Why Schools Are Struggling To Feed Students. Available online: https://www.npr.org/2020/09/08/908442609/children-are-going-hungry-why-schools-are-struggling-to-feed-students (accessed on 2 January 2021).
- Simone, M.; Emery, R.L.; Hazzard, V.M.; Eisenberg, M.E.; Larson, N.; Neumark-Sztainer, D. Disordered Eating in a Population-Based Sample of Young Adults during the COVID-19 Outbreak. Int. J. Eat. Disord. 2021, 54, 1189–1201. [Google Scholar] [CrossRef]
- Baceviciene, M.; Jankauskiene, R. Changes in Sociocultural Attitudes towards Appearance, Body Image, Eating Attitudes and Behaviours, Physical Activity, and Quality of Life in Students before and during COVID-19 Lockdown. Appetite 2021, 166, 105452. [Google Scholar] [CrossRef] [PubMed]
- Champagne, C.M.; Casey, P.H.; Connell, C.L.; Stuff, J.E.; Gossett, J.M.; Harsha, D.W.; McCabe-Sellers, B.; Robbins, J.M.; Simpson, P.M.; Weber, J.L.; et al. Poverty and Food Intake in Rural America: Diet Quality Is Lower in Food Insecure Adults in the Mississippi Delta. J. Am. Diet. Assoc. 2007, 107, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Tarasuk, V. Food Insecurity Is Associated with Nutrient Inadequacies among Canadian Adults and Adolescents. J. Nutr. 2008, 138, 604–612. [Google Scholar] [CrossRef]
- Dixon, L.B.; Winkleby, M.A.; Radimer, K.L. Dietary Intakes and Serum Nutrients Differ between Adults from Food-Insufficient and Food-Sufficient Families: Third National Health and Nutrition Examination Survey, 1988–1994. J. Nutr. 2001, 131, 1232–1246. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.; Teo, L.; Shanahan, C.; Legette, L.; Mitmesser, S.H. Inadequate Calcium and Vitamin D Intake and Osteoporosis Risk in Older Americans Living in Poverty with Food Insecurities. PLoS ONE 2020, 15, e0235042. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Valdés, S.; Tostes, M.D.G.V.; Anunciação, P.C.; da Silva, B.P.; Sant’Ana, H.M.P. Association between Vitamin Deficiency and Metabolic Disorders Related to Obesity. Crit. Rev. Food Sci. Nutr. 2017, 57, 3332–3343. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. In Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Melamed, M.L.; Chonchol, M.; Gutiérrez, O.M.; Kalantar-Zadeh, K.; Kendrick, J.; Norris, K.; Scialla, J.J.; Thadhani, R. The Role of Vitamin D in CKD Stages 3 to 4: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 72, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, R.P. Vitamin D in Health and Disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1535–1541. [Google Scholar] [CrossRef] [Green Version]
- Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory Epithelial Cells Convert Inactive Vitamin D to Its Active Form. J. Immunol. 2008, 181, 7090–7099. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-Like Receptor Triggering of a Vitamin D–Mediated Human Antimicrobial Response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Maggini, S. Feeding the Immune System: The Role of Micronutrients in Restoring Resistance to Infections. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–21. [Google Scholar] [CrossRef]
- Talat, N.; Perry, S.; Parsonnet, J.; Dawood, G.; Hussain, R. Vitamin D Deficiency and Tuberculosis Progression. Emerg. Infect. Dis. 2010, 16, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, R.J.; Llewelyn, M.; Toossi, Z.; Patel, P.; Pasvol, G.; Lalvani, A.; Wright, D.; Latif, M.; Davidson, R.N. Influence of Vitamin D Deficiency and Vitamin D Receptor Polymorphisms on Tuberculosis among Gujarati Asians in West London: A Case-Control Study. Lancet 2000, 355, 618–621. [Google Scholar] [CrossRef]
- Bergman, P.; Lindh, Å.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and Respiratory Tract Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2013, 8, e65835. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, D.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D in the Prevention of Acute Respiratory Infection: Systematic Review of Clinical Studies. J. Steroid Biochem. Mol. Biol. 2013, 136, 321–329. [Google Scholar] [CrossRef]
- Monlezun, D.J.; Bittner, E.A.; Christopher, K.B.; Camargo, C.A.; Quraishi, S.A. Vitamin D Status and Acute Respiratory Infection: Cross Sectional Results from the United States National Health and Nutrition Examination Survey, 2001–2006. Nutrients 2015, 7, 1933–1944. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.J.; Hesketh, K.; Power, C.; Hyppönen, E. Vitamin D Status Has a Linear Association with Seasonal Infections and Lung Function in British Adults. Br. J. Nutr. 2011, 106, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Quraishi, S.A.; Bittner, E.A.; Christopher, K.B.; Camargo, C.A., Jr. Vitamin D Status and Community-Acquired Pneumonia: Results from the Third National Health and Nutrition Examination Survey. PLoS ONE 2013, 8, e81120. [Google Scholar] [CrossRef]
- Ginde, A.A.; Mansbach, J.M.; Camargo, C.A. Association Between Serum 25-Hydroxyvitamin D Level and Upper Respiratory Tract Infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009, 169, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Belderbos, M.E.; Houben, M.L.; Wilbrink, B.; Lentjes, E.; Bloemen, E.M.; Kimpen, J.L.L.; Rovers, M.; Bont, L. Cord Blood Vitamin D Deficiency Is Associated With Respiratory Syncytial Virus Bronchiolitis. Pediatrics 2011, 127, e1513–e1520. [Google Scholar] [CrossRef]
- Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1, 25[OH]2 D3] Pre- and Post-Treatment Suppresses Inflammatory Response to Influenza A (H1N1) Infection in Human Lung A549 Epithelial Cells. Eur. J. Nutr. 2013, 52, 1405–1415. [Google Scholar] [CrossRef]
- Hansdottir, S.; Monick, M.M.; Lovan, N.; Powers, L.; Gerke, A.; Hunninghake, G.W. Vitamin D Decreases RSV Induction of NF-ΚB-Linked Chemokines and Cytokines in Airway Epithelium While Maintaining the Antiviral State. J. Immunol. 2010, 184, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D: A Custodian of Cell Signalling Stability in Health and Disease. Biochem. Soc. Trans. 2015, 43, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Pedruzzi, L.M.; Stockler-Pinto, M.B.; Leite, M.; Mafra, D. Nrf2–Keap1 System versus NF-ΚB: The Good and the Evil in Chronic Kidney Disease? Biochimie 2012, 94, 2461–2466. [Google Scholar] [CrossRef]
- Mohan, S.; Gupta, D. Crosstalk of Toll-like Receptors Signaling and Nrf2 Pathway for Regulation of Inflammation. Biomed. Pharmacother. 2018, 108, 1866–1878. [Google Scholar] [CrossRef]
- Ul Afshan, F.; Nissar, B.; Chowdri, N.A.; Ganai, B.A. Relevance of Vitamin D3 in COVID-19 Infection. Gene Rep. 2021, 24, 101270. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.M.; Solway, J. Association of Vitamin D Levels, Race/Ethnicity, and Clinical Characteristics With COVID-19 Test Results. JAMA Netw. Open 2021, 4, e214117. [Google Scholar] [CrossRef]
- Manicourt, D.; Devogelaer, J. Urban Air Pollution Is a Risk Factor for Vitamin D Deficiency in Postmenopausal Women. Nat. Rev. Endocrinol. 2008, 4, 587. [Google Scholar] [CrossRef]
- Bailey, B.A.; Manning, T.; Peiris, A.N. The Impact of Living in Rural and Urban Areas: Vitamin D and Medical Costs in Veterans. J. Rural Health 2012, 28, 356–363. [Google Scholar] [CrossRef]
- Ulmer, J.M.; Wolf, K.L.; Backman, D.R.; Tretheway, R.L.; Blain, C.J.; O’Neil-Dunne, J.P.; Frank, L.D. Multiple Health Benefits of Urban Tree Canopy: The Mounting Evidence for a Green Prescription. Health Place 2016, 42, 54–62. [Google Scholar] [CrossRef]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- WHO Micronutrients. Available online: https://www.who.int/westernpacific/health-topics/micronutrients (accessed on 23 November 2021).
- Office of Dietary Supplements-Vitamin A. Available online: https://ods.od.nih.gov/factsheets/VitaminA-HealthProfessional/ (accessed on 2 March 2021).
- Timoneda, J.; Rodríguez-Fernández, L.; Zaragozá, R.; Marín, M.P.; Cabezuelo, M.T.; Torres, L.; Viña, J.R.; Barber, T. Vitamin A Deficiency and the Lung. Nutrients 2018, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.C.; Havens, P.L.; Day, S.E.; Chusid, M.J.; Sowell, A.L.; Huff, D.L.; Peterson, D.E.; Bennin, R.A.; Circo, R.; Davis, J.P. Measles Severity and Serum Retinol (Vitamin A) Concentration Among Children in the United States. Pediatrics 1993, 91, 1176–1181. [Google Scholar] [CrossRef]
- Dowell, S.F.; Papic, Z.; Bresee, J.S.; Larrañaga, C.; Mendez, M.; Sowell, A.L.; Gary, H.E.J.; Anderson, L.J.; Avendaño, L.F. Treatment of Respiratory Syncytial Virus Infection with Vitamin A: A Randomized, Placebo-Controlled Trial in Santiago, Chile. Pediatric Infect. Dis. J. 1996, 15, 782–786. [Google Scholar] [CrossRef]
- Stinchfield, P.A.; Orenstein, W.A. Vitamin A for the Management of Measles in the United States. Infect. Dis. Clin. Pract. 2020, 28, 181–187. [Google Scholar] [CrossRef]
- Copaescu, A.; Smibert, O.; Gibson, A.; Phillips, E.J.; Trubiano, J.A. The Role of IL-6 and Other Mediators in the Cytokine Storm Associated with SARS-CoV-2 Infection. J. Allergy Clin. Immunol. 2020, 146, 518–534.e1. [Google Scholar] [CrossRef]
- Kirchmeyer, M.; Koufany, M.; Sebillaud, S.; Netter, P.; Jouzeau, J.-Y.; Bianchi, A. All-Trans Retinoic Acid Suppresses Interleukin-6 Expression in Interleukin-1-Stimulated Synovial Fibroblasts by Inhibition of ERK1/2 Pathway Independently of RAR Activation. Arthritis Res. Ther. 2008, 10, R141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Olagnier, D.; Lin, R. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity. Front. Immunol. 2017, 7, 662. [Google Scholar] [CrossRef] [Green Version]
- Sarohan, A.R. COVID-19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med. Hypotheses 2020, 144, 110250. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, K.; Chen, L.; Liao, X.; Deng, L.; Chen, S.; Ji, Y. Vitamin A Deficiency in Critically Ill Children with Sepsis. Crit. Care 2019, 23, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, G.F., Jr.; McClung, J.P. The Vitamins: Fundamental Aspects in Nutrition and Health, 5th ed.; Elsevier Inc: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-802965-7. [Google Scholar]
- Office of Dietary Supplements-Vitamin C. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ (accessed on 9 January 2022).
- Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400810/ (accessed on 9 January 2022).
- Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C—An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, 12, 3760. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, 2013, CD000980. [Google Scholar] [CrossRef] [Green Version]
- Changes in Leucocyte Ascorbic Acid during the Common Cold-R. Hume, Elspeth Weyers, 1973. Available online: https://journals.sagepub.com/doi/10.1177/003693307301800102?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 9 January 2022).
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, A.A.; Truwit, J.D.; Hite, R.D.; Morris, P.E.; DeWilde, C.; Priday, A.; Fisher, B.; Thacker, L.R.; Natarajan, R.; Brophy, D.F.; et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA 2019, 322, 1261–1270. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Reanalysis of the Effect of Vitamin C on Mortality in the CITRIS-ALI Trial: Important Findings Dismissed in the Trial Report. Front. Med. 2020, 7, 590853. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; et al. Pilot Trial of High-Dose Vitamin C in Critically Ill COVID-19 Patients. Ann. Intensive Care 2021, 11, 5. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Dalamitros, A.A.; Nikolaidis, P.A.; Hormeño-Holgado, A.; Tornero-Aguilera, J.F. Nutrition in the Actual COVID-19 Pandemic. A Narrative Review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Arentz, S.; Hunter, J.; Yang, G.; Goldenberg, J.; Beardsley, J.; Myers, S.P.; Mertz, D.; Leeder, S. Zinc for the Prevention and Treatment of SARS-CoV-2 and Other Acute Viral Respiratory Infections: A Rapid Review. Adv. Integr. Med. 2020, 7, 252–260. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and Respiratory Tract Infections: Perspectives for COVID-19 (Review). Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [Green Version]
- NIH Zinc. Available online: https://www.covid19treatmentguidelines.nih.gov/adjunctive-therapy/zinc/ (accessed on 3 December 2020).
- Xanthakos, S.A. Nutritional Deficiencies in Obesity and After Bariatric Surgery. Pediatr. Clin. N. Am. 2009, 56, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
- Lagunova, Z.; Porojnicu, A.C.; Vieth, R.; Lindberg, F.A.; Hexeberg, S.; Moan, J. Serum 25-Hydroxyvitamin D Is a Predictor of Serum 1,25-Dihydroxyvitamin D in Overweight and Obese Patients. J. Nutr. 2011, 141, 112–117. [Google Scholar] [CrossRef]
- Mai, X.-M.; Chen, Y.; Camargo, C.A., Jr.; Langhammer, A. Cross-Sectional and Prospective Cohort Study of Serum 25-Hydroxyvitamin D Level and Obesity in Adults: The HUNT Study. Am. J. Epidemiol. 2012, 175, 1029–1036. [Google Scholar] [CrossRef]
- Stokić, E.; Kupusinac, A.; Tomić-Naglić, D.; Zavišić, B.K.; Mitrović, M.; Smiljenić, D.; Soskić, S.; Isenović, E. Obesity and Vitamin D Deficiency: Trends to Promote a More Proatherogenic Cardiometabolic Risk Profile. Angiology 2015, 66, 237–243. [Google Scholar] [CrossRef]
- Durá-Travé, T.; Gallinas-Victoriano, F.; Chueca-Guindulain, M.J.; Berrade-Zubiri, S. Prevalence of Hypovitaminosis D and Associated Factors in Obese Spanish Children. Nutr. Diabetes 2017, 7, e248. [Google Scholar] [CrossRef]
- Macdonald, H.M.; Mavroeidi, A.; Barr, R.J.; Black, A.J.; Fraser, W.D.; Reid, D.M. Vitamin D Status in Postmenopausal Women Living at Higher Latitudes in the UK in Relation to Bone Health, Overweight, Sunlight Exposure and Dietary Vitamin D. Bone 2008, 42, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.S.; Evans, A.L.; Bowles, S.; Naylor, K.E.; Jones, K.S.; Schoenmakers, I.; Jacques, R.M.; Eastell, R. Free 25-Hydroxyvitamin D Is Low in Obesity, but There Are No Adverse Associations with Bone Health. Am. J. Clin. Nutr. 2016, 103, 1465–1471. [Google Scholar] [CrossRef] [Green Version]
- Trasino, S.E.; Tang, X.-H.; Jessurun, J.; Gudas, L.J. Obesity Leads to Tissue, but Not Serum Vitamin A Deficiency. Sci. Rep. 2015, 5, 15893. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Rowe, S. Factors Affecting Vitamin C Status and Prevalence of Deficiency: A Global Health Perspective. Nutrients 2020, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Pullar, J.M.; Bozonet, S.M.; Vissers, M.C.M. Marginal Ascorbate Status (Hypovitaminosis C) Results in an Attenuated Response to Vitamin C Supplementation. Nutrients 2016, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Block, G.; Mangels, A.R.; Patterson, B.H.; Levander, O.A.; Norkus, E.P.; Taylor, P.R. Body Weight and Prior Depletion Affect Plasma Ascorbate Levels Attained on Identical Vitamin C Intake: A Controlled-Diet Study. J. Am. Coll. Nutr. 1999, 18, 628–637. [Google Scholar] [CrossRef]
- García, O.P.; Long, K.Z.; Rosado, J.L. Impact of Micronutrient Deficiencies on Obesity. Nutr. Rev. 2009, 67, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Garg, R.; Kant, S.; Gaur, P. Vitamin D, C-Reactive Protein, and Oxidative Stress Markers in Chronic Obstructive Pulmonary Disease. Tzu-Chi Med. J. 2019, 33, 80–86. [Google Scholar] [CrossRef]
- Norris, K.C.; Olabisi, O.; Barnett, M.E.; Meng, Y.-X.; Martins, D.; Obialo, C.; Lee, J.E.; Nicholas, S.B. The Role of Vitamin D and Oxidative Stress in Chronic Kidney Disease. Int. J. Environ. Res. Public Health 2018, 15, 2701. [Google Scholar] [CrossRef] [Green Version]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, P.; Pregliasco, F.E.; Calvisi, V.; Caraffa, A.; Gallenga, C.E.; Kritas, S.K.; Ronconi, G. Monoclonal Antibody Therapy in COVID-19. J. Biol. Regul. Homeost. Agents 2021, 35, 423–427. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, J.-K.; Kim, D.-J.; Nam, J.-H.; Shim, S.-M.; Choi, Y.-K.; Lee, C.-H.; Poo, H. Diet-Induced Obesity Dramatically Reduces the Efficacy of a 2009 Pandemic H1N1 Vaccine in a Mouse Model. J. Infect. Dis. 2012, 205, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-L.; Shim, S.-H.; Lee, E.-Y.; Cho, W.; Park, S.; Jeon, H.-J.; Ahn, S.-Y.; Kim, H.; Nam, J.-H. Obesity-Induced Chronic Inflammation Is Associated with the Reduced Efficacy of Influenza Vaccine. Hum. Vaccines Immunother. 2014, 10, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Wadowski, M.; Goruk, S.; Cameron, L.; Sharma, A.M.; Field, C.J. Individuals with Obesity and Type 2 Diabetes Have Additional Immune Dysfunction Compared with Obese Individuals Who Are Metabolically Healthy. BMJ Open Diabetes Res. Care 2017, 5, e000379. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, Biochemical and Immune Biomarker Abnormalities Associated with Severe Illness and Mortality in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.G.; et al. Early Onset of SARS-COV-2 Antibodies after First Dose of BNT162b2: Correlation with Age, Gender and BMI. Vaccines 2021, 9, 685. [Google Scholar] [CrossRef]
- Parameswaran, K.; Todd, D.C.; Soth, M. Altered Respiratory Physiology in Obesity. Can. Respir. J. 2006, 13, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk-Bębenek, E.; Jagielski, P.; Bolesławska, I.; Jagielska, A.; Nitsch-Osuch, A.; Kawalec, P. Nutrition Behaviors in Polish Adults before and during COVID-19 Lockdown. Nutrients 2020, 12, 3084. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.B.; Sloane, D.C.; Nascimento, L.M.; Diamant, A.L.; Guinyard, J.J.; Yancey, A.K.; Flynn, G. African Americans’ Access to Healthy Food Options in South Los Angeles Restaurants. Am. J. Public Health 2005, 95, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Bassford, N.; Galloway-Gilliam, L.; Flynn, G. Food Desert to Food Oasis: Promoting Grocery Store Development in South Los Angeles; Community Health Councils: Los Angeles, CA, USA, 2010. [Google Scholar]
- LA County Public Health-Epidemiology. Available online: http://publichealth.lacounty.gov/epi/ (accessed on 9 January 2021).
- Los Angeles County Department of Public Health. Office of Health Assessment and Epidemiology Food Insecurity in Los Angeles County; Los Angeles Department of Public Health: Los Angeles, CA, USA, 2017. [Google Scholar]
- Vijayan, T.; Shin, M.; Adamson, P.C.; Harris, C.; Seeman, T.; Norris, K.C.; Goodman-Meza, D. Beyond the 405 and the 5: Geographic Variations and Factors Associated with SARS-CoV-2 Positivity Rates in Los Angeles County. Clin. Infect. Dis. 2020, 73, e2970–e2975. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, B.A.; Surampudi, V.; Li, Z.; Harris, C.; Seeman, T.; Norris, K.C.; Vijayan, T. Micronutrient Deficiency as a Confounder in Ascertaining the Role of Obesity in Severe COVID-19 Infection. Int. J. Environ. Res. Public Health 2022, 19, 1125. https://doi.org/10.3390/ijerph19031125
Chu BA, Surampudi V, Li Z, Harris C, Seeman T, Norris KC, Vijayan T. Micronutrient Deficiency as a Confounder in Ascertaining the Role of Obesity in Severe COVID-19 Infection. International Journal of Environmental Research and Public Health. 2022; 19(3):1125. https://doi.org/10.3390/ijerph19031125
Chicago/Turabian StyleChu, Brian A., Vijaya Surampudi, Zhaoping Li, Christina Harris, Teresa Seeman, Keith C. Norris, and Tara Vijayan. 2022. "Micronutrient Deficiency as a Confounder in Ascertaining the Role of Obesity in Severe COVID-19 Infection" International Journal of Environmental Research and Public Health 19, no. 3: 1125. https://doi.org/10.3390/ijerph19031125