Direct Medical Cost of Stroke and the Cost-Effectiveness of Direct Oral Anticoagulants in Atrial Fibrillation-Related Stroke: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Design
2.2. Recruitment of Study Sample
2.3. Data Collection
2.4. Calculation of Direct Medical Cost of Stroke
2.5. Cost-Effectiveness Analysis (CEA) of DOACS
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.1.1. Total Stroke Patients (AF-Related Stroke and Non-AF Related Stroke)
3.1.2. Subgroup of AF-Related Stroke Patients
3.2. Direct Medical Cost of Stroke Evaluation
3.3. Cost-Effectiveness Analysis of DOACs in the Prevention of AF-Related Stroke
3.3.1. Calculation of the Cost Effectiveness Ratio (CER) of DOACs (Versus Warfarin) Based on Stroke Severity According to the mRS Score for AF-Related Ischaemic Stroke Patients
- The CER calculation for DOACs based on the percentage of patients with mild degree of stroke (mRS score of 0–2) is as follows:
- 2.
- The CER calculation for warfarin based on the percentage of patients with mild degree of stroke (mRS score of 0–2) is as follows:
3.3.2. Calculation of the Incremental Cost-Effectiveness Ratio (ICER) of DOACs (versus Warfarin) Based on the Severity of the Stroke by Using the mRS Score for AF-Related Stroke Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, A.L.; Silvestrini, M.; Topakian, R.; Golledge, J.; Brunser, A.M.; De Borst, G.J.; Harbaugh, R.E.; Doubal, F.N.; Rundek, T.; Thapar, A.; et al. Optimizing the Definitions of Stroke, Transient Ischemic Attack, and Infarction for Research and Application in Clinical Practice. Front. Neurol. 2017, 8, 537. [Google Scholar] [CrossRef]
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef]
- Alkhouli, M.; Alqahtani, F.; Aljohani, S.; Alvi, M.; Holmes, D.R. Burden of Atrial Fibrillation–Associated Ischemic Stroke in the United States. JACC: Clin. Electrophysiol. 2018, 4, 618–625. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef]
- Wang, K.-L.; Lip, G.Y.H.; Chiang, C.-E. Stroke prevention in atrial fibrillation: An Asian perspective. Thromb. Haemost. 2014, 111, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Amal, N.M.; Paramesarvathy, R.; Tee, G.H.; Gurpreet, K.; Karuthan, C. Prevalence of Chronic Illness and Health Seeking Behaviour in Malaysian Population: Results from the Third National Health Morbidity Survey (NHMS III) 2006. Med. J. Malays. 2011, 66, 36–41. [Google Scholar]
- National Health and Morbidity Survey 2011 (NHMS-2011) Volume II Non-Communicable Diseases; Institute for Public Health, Ministry of Health: Kuala Lumpur, Malaysia, 2011.
- Lim, C.W.; Kasim, S.; Ismail, J.R.; Chua, N.Y.C.; Khir, R.N.; Abidin, H.A.Z.; Rahman, E.A.; Arshad, M.K.M.; Othman, Z.I.; Yusoff, K. Prevalence of atrial fibrillation in the Malaysian communities. Hear. Asia 2016, 8, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Ceornodolea, A.D.; Bal, R.; Severens, J.L. Epidemiology and Management of Atrial Fibrillation and Stroke: Review of Data from Four European Countries. Hindawi Ltd. Stroke Res. Treat. 2017, 2017, 8593207. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.V.; Pereira, J.; Pinto, R.; Castro, P.M.; Azevedo, E.; Freitas, A. Atrial Fibrillation as an Ischemic Stroke Clinical and Economic Burden Modifier: A 15-Year Nationwide Study. Value Health 2017, 20, 1083–1091. [Google Scholar] [CrossRef]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
- Sussman, M.; Menzin, J.; Lin, I.; Kwong, W.J.; Munsell, M.; Friedman, M.; Selim, M. Impact of Atrial Fibrillation on Stroke-Related Healthcare Costs. J. Am. Heart Assoc. 2013, 2, e000479. [Google Scholar] [CrossRef]
- Wang, G.; Joo, H.; Tong, X.; George, M.G. Hospital Costs Associated With Atrial Fibrillation for Patients With Ischemic Stroke Aged 18–64 Years in the United States. Stroke 2015, 46, 1314–1320. [Google Scholar] [CrossRef]
- Ali, A.N.; Howe, J.; Abdel-Hafiz, A. Cost of Acute Stroke Care for Patients with Atrial Fibrillation Compared with Those in Sinus Rhythm. Pharm. Econ. 2015, 33, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Aznida, F.; Azlin, N.M.; Amrizal, M.; Saperi, S.; Aljunid, S. The cost of treating an acute ischaemic stroke event and follow-up at a teaching hospital in Malaysia: A Casemix costing analysis. BMC Health Serv. Res. 2012, 12, 6. [Google Scholar] [CrossRef][Green Version]
- Mohd Nordin, N.A.; Aljunid, S.M.; Aziz, N.A.; Muhammad Nur, A.; Sulong, S. Direct Medical Cost of Stroke: Findings from a Tertiary Hospital in Malaysia. Med. J. Malays. 2012, 67, 465–469. [Google Scholar]
- Ismail, A.; Reffien, M.A.M.; Ibrahim, N.M.; Sobri, H.N.M.; Abidin, N.D.I.Z.; Rusli, S.A.S.S.; Selamat, E.M. Factors Associated With Length of Stay for Patients With Stroke in Malaysia. Glob. J. Qual. Saf. Healthc. 2020, 3, 134–138. [Google Scholar] [CrossRef]
- Cantú-Brito, C.; Silva, G.S.; Ameriso, S.F. Use of Guidelines for Reducing Stroke Risk in Patients With Nonvalvular Atrial Fibrillation: A Review From a Latin American Perspective. Clin. Appl. Thromb. 2017, 24, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Landefeld, C.; Beyth, R.J. Anticoagulant-related bleeding: Clinical epidemiology, prediction, and prevention. Am. J. Med. 1993, 95, 315–328. [Google Scholar] [CrossRef]
- Burnett, A.; Tiongson, J.; Downey, R.; Mahan, C.E. The hidden costs of anticoagulation in hospitalized patients with non-valvular atrial fibrillation. Expert Opin. Pharmacother. 2013, 14, 1119–1133. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.; Piccini, J.P.; et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.V.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Ave-zum, A.; et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Zirlik, A.; Bode, C. Vitamin K antagonists: Relative strengths and weaknesses vs. direct oral anticoagulants for stroke prevention in patients with atrial fibrillation. J. Thromb. Thrombolysis 2017, 43, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-T.; Lee, M.-C.; Chen, Z.-C.; Ku, L.-J.E.; Wang, J.-D.; Toh, H.S. Cost-Effectiveness Analysis of Oral Anticoagulants in Stroke Prevention among Patients with Atrial Fibrillation in Taiwan. Acta Cardiol. Sin 2020, 36, 50–61. [Google Scholar]
- Rattanachotphanit, T.; Limwattananon, C.; Waleekhachonloet, O.; Limwattananon, P.; Sawanyawisuth, K. Cost-Effectiveness Analysis of Direct-Acting Oral Anticoagulants for Stroke Prevention in Thai Patients with Non-Valvular Atrial Fibrillation and a High Risk of Bleeding. Pharm. Econ. 2019, 37, 279–289. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Cho, S.-K.; Kim, J.-B.; Joung, B.; Kim, C. Cost-Effectiveness of Rivaroxaban Compared to Warfarin for Stroke Prevention in Atrial Fibrillation. Korean Circ. J. 2019, 49, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Vilain, K.A.; Yang, M.C.; Tan, E.C.H.; Wang, K.; Li, H.; Hsu, W.H.; Giugliano, R.P.; Cohen, D.J.; Magnuson, E.A. Cost-Effectiveness of Edoxaban vs. Warfarin in Patients with Atrial Fibrillation Based on Results of the ENGAGE AF—TIMI 48 Trial: Taiwanese Perspective. Value Health Reg. Issues 2017, 12, 74–83. [Google Scholar] [CrossRef]
- Li, X.; Tse, V.C.; Lau, W.; Cheung, B.M.Y.; Lip, G.Y.H.; Wong, I.C.K.; Chan, E.W. Cost-Effectiveness of Apixaban versus Warfarin in Chinese Patients with Non-Valvular Atrial Fibrillation: A Real-Life and Modelling Analyses. PLoS ONE 2016, 11, e0157129. [Google Scholar] [CrossRef]
- Noor Haslinda, I.; Muhamad Hanafiah, J.; Rosliza, A.M.; Faisal, I. Designing and Conducting Cost-Effectiveness Analysis Studies In Healthcare. Int. J. Public Health Clin. Sci. 2017, 4, 62–76. [Google Scholar]
- Lim, Y.W.; Shafie, A.A.; Chua, G.N.; Hassali, M.A.A. Determination of Cost-Effectiveness Threshold for Health Care Interventions in Malaysia. Value Health 2017, 20, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.R.; Nambudiri, V.E. Research Techniques Made Simple: Cost-Effectiveness Analysis. J. Investig. Dermatol. 2017, 137, e143–e147. [Google Scholar] [CrossRef]
- Göz, E.; Kahraman, T.; Genc, A.; Kaya, Ö.; Öztürk, V.; Kutluk, K. Factors Affecting Hospital Length of Stay Among Patients with Acute Stroke. J. Neurol. Sci. 2017, 34, 143–152. [Google Scholar]
- Zhang, H.; Yin, Y.; Zhang, C.; Zhang, D. Costs of hospitalization for stroke from two urban health insurance claims data in Guangzhou City, southern China. BMC Health Serv. Res. 2019, 19, 671. [Google Scholar] [CrossRef]
- Chow, W.L.; Tin, A.S.; Meyyappan, A. Factors Influencing Costs of Inpatient Ischaemic Stroke Care in Singapore. Proc. Singap. Healthc. 2010, 19, 283–291. [Google Scholar] [CrossRef]
- Ng, C.S.; Toh, M.P.H.S.; Ng, J.; Ko, Y. Direct medical cost of stroke in Singapore. Int. J. Stroke 2015, 10, 75–82. [Google Scholar] [CrossRef]
- Mercier, G.; Naro, G. Costing Hospital Surgery Services: The Method Matters. PLoS ONE 2014, 9, e97290. [Google Scholar] [CrossRef] [PubMed]
- Abdo, R.R.; Abboud, H.M.; Salameh, P.G.; Jomaa, N.A.; Rizk, R.G.; Hosseini, H.H. Direct Medical Cost of Hospitalization for Acute Stroke in Lebanon: A Prospective Incidence-Based Multicenter Cost-of-Illness Study. Inq. J. Heal. Care Organ. Provision, Financing 2018, 55, 46958018792975. [Google Scholar] [CrossRef]
- Pan, X.; Simon, T.A.; Hamilton, M.; Kuznik, A. Comparison of costs and discharge outcomes for patients hospitalized for ischemic or hemorrhagic stroke with or without atrial fibrillation in the United States. J. Thromb. Thrombolysis 2015, 39, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Dewilde, S.; Annemans, L.; Peeters, A.; Hemelsoet, D.; Vandermeeren, Y.; Desfontaines, P.; Brouns, R.; Vanhooren, G.; Cras, P.; Michielsens, B.; et al. Modified Rankin scale as a determinant of direct medical costs after stroke. Int. J. Stroke 2017, 12, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Lekander, I.; Willers, C.; Von Euler, M.; Lilja, M.; Sunnerhagen, K.S.; Pessah-Rasmussen, H.; Borgström, F. Relationship between functional disability and costs one and two years post stroke. PLoS ONE 2017, 12, e0174861. [Google Scholar] [CrossRef]
- Berger, J.T. Discharge against medical advice: Ethical considerations and professional obligations. J. Hosp. Med. 2008, 3, 403–408. [Google Scholar] [CrossRef]
- Laliberté, F.; Pilon, D.; Raut, M.K.; Nelson, W.W.; Olson, W.H.; Germain, G.; Schein, J.R.; Lefebvre, P. Hospital length of stay: Is rivaroxaban associated with shorter inpatient stay compared to warfarin among patients with non-valvular atrial fibrillation? Curr. Med Res. Opin. 2014, 30, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Cartman, G.; Blostein, M.; Eisenberg, M.J. Correlation between CHADS2 score and anticoagulant use in atrial fibrillation: Results of a mini-survey. Exp. Clin. Cardiol. 2013, 18, 101–103. [Google Scholar] [PubMed]
- Zathar, Z.; Karunatilleke, A.; Fawzy, A.M.; Lip, G.Y.H. Atrial Fibrillation in Older People: Concepts and Controversies. Front. Med. 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Garkina, S.V.; Vavilova, T.V.; Lebedev, D.; Mikhaylov, E.N. Compliance and adherence to oral anticoagulation therapy in elderly patients with atrial fibrillation in the era of direct oral anticoagulants. J. Geriatr. Cardiol. 2016, 13, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Snowball, J.; Welsh, T.J.; Watson, M.C.; McGrogan, A. Prescribing of direct oral anticoagulants and warfarin to older people with atrial fibrillation in UK general practice: A cohort study. BMC Med. 2021, 19, 189. [Google Scholar] [CrossRef]
- Lubitz, S.A.; Khurshid, S.; Weng, L.C.; Doros, G.; Keach, J.W.; Gao, Q.; Gehi, A.K.; Hsu, J.C.; Reynolds, M.R.; Turakhia, M.P.; et al. Predictors of oral anticoagulant non-prescription in patients with atrial fibrillation and elevated stroke risk. Am. Heart J. 2018, 200, 24–31. [Google Scholar] [CrossRef]
- Königsbrügge, O.; Simon, A.; Domanovits, H.; Pabinger, I.; Ay, C. Thromboembolic events, bleeding, and drug discontinuation in patients with atrial fibrillation on anticoagulation: A prospective hospital-based registry. BMC Cardiovasc. Disord. 2016, 16, 254. [Google Scholar] [CrossRef] [PubMed]
- Osasu, Y.M.; Cooper, R.; Mitchell, C. Patients’ and clinicians’ perceptions of oral anticoagulants in atrial fibrillation: A systematic narrative review and meta-analysis. BMC Fam. Pr. 2021, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.C.; Simon, D.N.; Allen, L.A.; Singer, D.E.; Fonarow, G.; Kowey, P.R.; Thomas, L.E.; Ezekowitz, M.D.; Mahaffey, K.W.; Chang, P.; et al. Reasons for warfarin discontinuation in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am. Hear. J. 2014, 168, 487–494. [Google Scholar] [CrossRef]
- Chee, K.H.; Tan, K.S. Impact of atrial fibrillation among stroke patients in a Malaysian teaching hospital. Med. J. Malays. 2014, 69, 119–123. [Google Scholar]
- Freestone, B.; Rajaratnam, R.; Hussain, N.; Lip, G. Admissions with atrial fibrillation in a multiracial population in Kuala Lumpur, Malaysia. Int. J. Cardiol. 2003, 91, 233–238. [Google Scholar] [CrossRef]
- Bang, H.; Zhao, H. Median-Based Incremental Cost-Effectiveness Ratio (ICER). J. Stat. Theory Pract. 2012, 6, 428–442. [Google Scholar] [CrossRef]
- Shah, A.; Shewale, A.; Hayes, C.J.; Martin, B.C. Cost-Effectiveness of Oral Anticoagulants for Ischemic Stroke Prophylaxis Among Nonvalvular Atrial Fibrillation Patients. Stroke 2016, 47, 1555–1561. [Google Scholar] [CrossRef]
- Janzic, A.; Kos, M. Cost Effectiveness of Novel Oral Anticoagulants for Stroke Prevention in Atrial Fibrillation Depending on the Quality of Warfarin Anticoagulation Control. Pharm. Econ. 2015, 33, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Chen, H.-C. Cost-Effectiveness Analysis of Apixaban, Dabigatran, Rivaroxaban, and Warfarin for Stroke Prevention in Atrial Fibrillation in Taiwan. Clin. Drug Investig. 2017, 37, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Dilokthornsakul, P.; Nathisuwan, S.; Krittayaphong, R.; Chutinet, A.; Permsuwan, U. Cost-Effectiveness Analysis of New Oral Anticoagulants Compared To Warfarin In Thai Patients With Non-Valvular Atrial Fibrillation. Value Health 2018, 21, S30–S31. [Google Scholar] [CrossRef]
- Harrington, A.R.; Armstrong, E.P.; Nolan, P.E.; Malone, D.C. Cost-Effectiveness of Apixaban, Dabigatran, Rivaroxaban, and Warfarin for Stroke Prevention in Atrial Fibrillation. Stroke 2013, 44, 1676–1681. [Google Scholar] [CrossRef]
- Marseille, E.; Larson, B.; Kazi, D.S.; Kahn, J.G.; Rosen, S. Thresholds for the cost–effectiveness of interventions: Alternative approaches. Bull. World Health Organ. 2015, 93, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J. Using Cost-Effectiveness Evidence to Inform Decisions as to which Health Services to Provide. Health Syst. Reform 2016, 2, 32–38. [Google Scholar] [CrossRef][Green Version]
Characteristics | Subgroups | n (%) |
---|---|---|
Stroke types | AF-related stroke | 344 (9.3) |
Non-AF-related stroke | 3345 (90.7) | |
Mean (SD) length of stay, LOS (days) | 5 ± 3.4 | - |
LOS (grouping) | ≤3 days | 1156 (31.3) |
4–7 days | 1556 (42.2) | |
>7 days | 977 (26.5) | |
Mean age (SD) | 64 ± 14.6 | - |
Age group (years) | <50 | 629 (17.1) |
50–59 | 751 (20.4) | |
60–74 | 1509 (40.9) | |
75 and above | 800 (21.7) | |
Gender | Male | 2223 (60.3) |
Female | 1466 (39.7) | |
Stroke subtype | Ischemic stroke | 2305 (62.5) |
Haemorrhagic stroke | 613 (16.6) | |
Unspecified stroke | 771 (20.9) | |
Level of stroke severity (mRS score) | Mild (score of 0–2) | 1695 (45.9) |
Moderate (score of 3–4) | 1329 (36.0) | |
Severe (score of 5) | 354 (9.6) | |
Died (score of 6) | 221 (6.0) | |
Unable to determine | 90 (2.4) | |
Main comorbidities | Diseases of circulatory system | 1911 (51.8) |
Diabetes | 1029 (27.9) | |
Diseases of respiratory system | 409 (11.1) | |
Renal diseases | 159 (4.3) | |
Others | 181 (4.9) | |
Causes of mortality | Massive infarct | 38 (17.2) |
Massive bleed (ICH, etc.) | 141 (63.8) | |
GIT bleed (UGIB, etc.) | 1 (0.5) | |
Stroke associated pneumonia | 12(5.4) | |
Recurrent stroke | 12 (5.4) | |
Sepsis | 2 (0.9) | |
Others (Cardiac complications; Metabolic cause, etc.) | 15 (6.8) | |
Discharge disposition status | Home | 3422 (92.8) |
Transfer | 1 (0) | |
Against medical advice | 15 (0.4) | |
Died | 221(6.0) | |
Others | 30 (0.8) |
Variables | Sub-Groups | n (%) |
---|---|---|
Mean LOS (SD), days | 6 ± 4.2 days | - |
Length of stay (LOS) | ≤3 days | 56 (16.3) |
4–7 days | 144 (41.9) | |
>7 days | 144 (41.9) | |
Mean age (SD) | 71 ± 9.8 | - |
Age group (years) | <50 | 14 (4.1) |
50–59 | 38 (11.0) | |
60–74 | 159 (46.2) | |
75 and above | 133 (38.7) | |
Gender | Male | 176 (51.2) |
Female | 168 (48.8) | |
Stroke subtype | Ischemic stroke | 252 (73.3) |
Haemorrhagic stroke | 20 (5.8) | |
Unspecified stroke | 72 (20.9) | |
Stroke severity (mRS score) | Mild (score of 0–2) | 80 (23.3) |
Moderate (score of 3–4) | 173 (50.3) | |
Severe (score of 5) | 49 (14.2) | |
Died (score of 6) | 30 (8.7) | |
Unable to determine | 12 (3.5) | |
Main comorbidities | Diseases of circulatory system | 179 (52.0) |
Diabetes | 88 (25.6) | |
Diseases of respiratory system | 12 (3.4) | |
Renal diseases | 25 (7.2) | |
Others | 40 (11.7) | |
Ward | Medical | 246 (71.5) |
Surgery | 27 (7.8) | |
General Intensive Care Unit (ICU) | 3 (0.9) | |
Stroke Care Unit (SCU) | 58 (16.9) | |
High Dependency Ward (HDW) | 1 (0.3) | |
Others (Staff ward, Coronary rehabilitation ward) | 9 (2.6) | |
Discharge Disposition Status | Home | 305 (88.7) |
Against medical advice | 5 (1.5) | |
Died | 30 (8.7) | |
Others | 4 (1.2) | |
CHADS2 Score | Score of 0 | 32 (9.3) |
Score of 1 | 124 (36.1) | |
Score of 2 or more | 188 (54.7) |
Variables | Sub-Groups | n (%) |
---|---|---|
Baseline anticoagulant therapy (before index stroke event) | None | 276 (80.2) |
DOACs | 25 (7.3) | |
Warfarin | 42 (12.2) | |
Both DOACs and warfarin | 1 (0.3) | |
Baseline DOACs (before index stroke event) (n = 25) | Dabigatran 110 mg | 8 (32.0) |
Dabigatran 150 mg | 4 (16.0) | |
Rivaroxaban 15 mg | 5 (20.0) | |
Rivaroxaban 20 mg | 3 (12.0) | |
Apixaban 2.5 mg | 2 (8.0) | |
Apixaban 5.0 mg | 3 (12.0) | |
Anticoagulant therapy after the stroke event (in the ward) | None | 181(52.6) |
DOACs | 88 (25.6) | |
Warfarin | 67 (19.5) | |
Both DOACs and warfarin | 8 (2.3) | |
DOACs use after the stroke event (in the ward) (n = 88) | Dabigatran 110 mg | 19 (21.6) |
Dabigatran 150 mg | 22 (25.0) | |
Rivaroxaban 15 mg | 7 (8.0) | |
Rivaroxaban 20 mg | 15 (17.0) | |
Apixaban 2.5 mg | 7 (8.0) | |
Apixaban 5.0 mg | 11 (12.5) | |
Dabigatran + Rivaroxaban | 3 (3.4) | |
Dabigatran + Apixaban | 4 (4.5) |
Variables | Total Stroke Cases (n = 3689) | AF-Related Stroke Cases (n = 344) | Non-AF Related Stroke Cases (n = 3345) | p Value * |
---|---|---|---|---|
Mean LOS, days (SD) | 5 ± 3.4 | 6 ± 4.2 days | 5 ± 2.9 | 0.002 |
Total direct medical cost of stroke (MYR) | 11,669,414.83 | 1,219,181.36 | 10,450,233.47 | 0.001 |
Median cost per patient per admission MYR (IQR) | 2269.79 (2269.79–2924.96) | 2839.73 (2269.79–3101.52) | 2338.40 (2110.82–2876.16) | <0.001 |
Median cost per inpatient day, MYR (IQR) | 453.96 (321.20–362.45) | 473.29 (289.11–412.43) | 467.68 (365.23–422.98) | <0.001 |
DOACs (n = 88) | Warfarin (n = 67) | p Value * | |
---|---|---|---|
Median cost, MYR (IQR) | 2839.73 (2269.7–3101.52) | 2269.76 (2109.72–3607.56) | 0.069 |
Median LOS, days (IQR) | 5.00 (4.00–8.25) | 7.00 (5.00–11.00) | 0.121 |
Median mRS score (IQR) | 3.00 (2.00–4.00) | 4.00 (2.00–4.00) | 0.538 |
Total direct medical cost (MYR) | 271,504.41 | 188,068.14 | 0.087 |
Percentage of patients with mild degree of stroke (mRS score of 0–2) during hospitalisation (%) | 64.8 | 35.2 | - |
Independent Variables | Coefficient (SE) | t Value | p Value | |
---|---|---|---|---|
Constant | 2453.256 (774.392) | |||
Stroke types | AF-related stroke (vs. non-AF related stroke) | 274.574 (210.965) | 1.302 | 0.013 * |
Length of hospital stay (LOS) | 4–7 days (vs. ≤3 days) | 187.17 (348.04) | 0.538 | 0.197 |
>7 days (vs. ≤3 days) | 2158.01 (2679.73) | 0.801 | 0.001 * |
Independent Variables | Coefficient (SE) | t Value | p Value | |
---|---|---|---|---|
Constant | 3224.149 (2248.759) | |||
Stroke sub-types | Unspecified stroke (vs. ischemic stroke) | −351.790 (557.398) | −0.631 | 0.689 |
Haemorrhagic stroke (vs. ischemic stroke) | 1514.265 (638.068) | 2.373 | 0.009 * | |
Stroke severity level (mRS score) | Moderate (score of 3–4) (vs. mild (score of 0–2)) | 295.774 (825.464) | 0.358 | 0.010 * |
Severe (score of 5) (vs. mild (score of 0–2)) | 2397.724 (921.715) | 2.601 | 0.011 * | |
Patients’ discharge disposition status | Home (vs. “died”) | 104.484 (1204.216) | 0.087 | 0.931 |
Against medical advice (vs. “died”) | 8618.853 (2370.864) | 3.635 | <0.001 * |
AF Related Stroke Severity Level (mRS score) | Total, n (%) | |||||
---|---|---|---|---|---|---|
Types of Oral Anticoagulant | Mild (Score 0–2) | Moderate (Score 3–4) | Severe (Score 5) | Died (Score 6) | Unable to Determine | |
DOACS, n (%) | 35 (64.8) | 42 (52.5) | 6 (54.5) | 0 | 5 (71.4) | 88 (56.8) |
Warfarin, n (%) | 19 (35.2) | 38 (47.5) | 5 (45.5) | 3 (100) | 2 (28.6) | 67 (43.2) |
Total, n (%) | 54 (100) | 80 (100) | 11 (100) | 3 (100) | 7 (100) | 155(100) |
Intervention (Oral Anticoagulant Therapy) | Median Direct Medical Cost of AF-Related Stroke (“per patient”) (MYR) | Outcome (Percentage of Patients with Mild Degree of Stroke (mRS Score of 0–2) (%) | Median Incremental Cost per Patient (MYR) | CER (MYR) | ICER |
---|---|---|---|---|---|
DOACs | 2839.73 | 64.8 | 569.94 | 43.82 | 19.25 |
Warfarin | 2269.79 | 35.2 | - | 64.48 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azahar, S.N.; Sulong, S.; Wan Zaidi, W.A.; Muhammad, N.; Kamisah, Y.; Masbah, N. Direct Medical Cost of Stroke and the Cost-Effectiveness of Direct Oral Anticoagulants in Atrial Fibrillation-Related Stroke: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 1078. https://doi.org/10.3390/ijerph19031078
Azahar SN, Sulong S, Wan Zaidi WA, Muhammad N, Kamisah Y, Masbah N. Direct Medical Cost of Stroke and the Cost-Effectiveness of Direct Oral Anticoagulants in Atrial Fibrillation-Related Stroke: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(3):1078. https://doi.org/10.3390/ijerph19031078
Chicago/Turabian StyleAzahar, Siti Norain, Saperi Sulong, Wan Asyraf Wan Zaidi, Norliza Muhammad, Yusof Kamisah, and Norliana Masbah. 2022. "Direct Medical Cost of Stroke and the Cost-Effectiveness of Direct Oral Anticoagulants in Atrial Fibrillation-Related Stroke: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 3: 1078. https://doi.org/10.3390/ijerph19031078
APA StyleAzahar, S. N., Sulong, S., Wan Zaidi, W. A., Muhammad, N., Kamisah, Y., & Masbah, N. (2022). Direct Medical Cost of Stroke and the Cost-Effectiveness of Direct Oral Anticoagulants in Atrial Fibrillation-Related Stroke: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(3), 1078. https://doi.org/10.3390/ijerph19031078