Spatial Distribution and Estimation Model of Soil pH in Coastal Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing and Analysis
3. Results
3.1. Spatial Distribution of Soil pH in Coastal Eastern China
3.2. Effects of Hydrothermal Conditions on Soil pH
3.2.1. The General Relationship between Soil pH and Hydrothermal Conditions
3.2.2. Relationship between Soil pH and Hydrothermal Conditions in Regions with Different MAP
3.3. The Estimation Model of Soil pH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, D.A.; Jackson, B.M.; Clothier, B.E.; Dominati, E.J.; Marchant, S.C.; Cooper, D.M.; Bristow, K.L. Advances in soil ecosystem services: Concepts, models, and applications for earth system life support. Vadose Zone J. 2013, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sun, X.; Wu, W.; Liu, Z.; Fang, G.; Yang, P. Agroecosystem services: A review of concepts, indicators, assessment methods and future research perspectives. Ecol. Indic. 2022, 142, 109218. [Google Scholar] [CrossRef]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C.W. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 2011, 110, 1–75. [Google Scholar]
- Li, Y.; Gong, X.; Xiong, J.; Sun, Y.; Shu, Y.; Niu, D.; Lin, Y.; Wu, L.; Zhang, R. Different dissolved organic matters regulate the bioavailability of heavy metals and rhizosphere microbial activity in a plant-wetland soil system. J. Environ. Chem. Eng. 2021, 9, 106823. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef]
- Gardi, C.; Yigini, Y. Continuous mapping of soil pH using digital soil mapping approach in Europe. Eurasian J. Soil Sci. 2012, 1, 64–68. [Google Scholar]
- Sun, X.L.; Wang, H.L.; Zhao, Y.G.; Zhang, C.; Zhang, G.L. Digital soil mapping based on wavelet decomposed components of environmental covariates. Geoderma 2017, 303, 118–132. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Chang, C.; Lin, F.; Zhou, X.; Zhao, G. Hyper-spectral response and estimation model of soil degradation in Kenli County, the Yellow River Delta. PLoS ONE 2020, 15, e0227594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, T.; Liu, J.; Lin, Z.; Li, S.; Wang, R.; Ge, Y. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy. Comput. Electron Agric. 2015, 111, 69–77. [Google Scholar] [CrossRef]
- Odhiambo, B.O.; Kenduiywo, B.K.; Were, K. Spatial prediction and mapping of soil pH across a tropical afro-montane landscape. Appl. Geogr. 2020, 114, 102129. [Google Scholar] [CrossRef]
- Kingsley, J.; Lawani, S.O.; Esther, A.O.; Ndiye, K.M.; Sunday, O.J.; Penížek, V. Predictive mapping of soil properties for precision agriculture using geographic information system (GIS) based geostatistics models. Mod. Appl. Sci. 2019, 13, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M.; Doukas, I.J.D. Comparing machine learning models and hybrid geostatistical methods using environmental and soil covariates for soil pH prediction. ISPRS Int. J. Geoinf. 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances—A review. TrAC Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Tavares, T.R.; Mouazen, A.M.; Nunes, L.C.; dos Santos, F.R.; Melquiades, F.L.; da Silva, T.R.; Krug, F.J.; Molin, J.P. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis. Soil Tillage Res. 2022, 216, 105250. [Google Scholar] [CrossRef]
- Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil Tillage Res. 2015, 146, 243–252. [Google Scholar] [CrossRef]
- Barman, U.; Choudhury, R.D.; Talukdar, N.; Deka, P.; Kalita, I.; Rahman, N. Predication of soil pH using HSI colour image processing and regression over Guwahati, Assam, India. J. Appl. Nat. Sci. 2018, 10, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.E.; Singh, B.P.; Dalal, R.C. Soil health indicators under climate change: A review of current knowledge. In Soil Health and Climate Change; Singh, B., Cowie, A., Chan, K., Eds.; Springer: Berlin, Germany, 2011; Volume 29, pp. 25–45. [Google Scholar]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef]
- Rengel, Z. Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; Singh, B., Cowie, A., Chan, K., Eds.; Springer: Berlin, Germany, 2011; Volume 29, pp. 69–85. [Google Scholar]
- Patil, A.; Lamnganbi, M. Impact of climate change on soil health: A review. Int. J. Chem. Stud. 2018, 6, 2399–2404. [Google Scholar]
- Meng, C.; Tian, D.; Zeng, H.; Li, Z.; Yi, C.; Niu, S. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 2019, 14, 074003. [Google Scholar] [CrossRef]
- Ricketts, M.P.; Matamala, R.; Jastrow, J.D.; Antonopoulos, D.A.; Koval, J.; Ping, C.L.; Liang, C.; Gonzalez-Meler, M.A. The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biol. Biochem. 2020, 148, 107882. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Report, Climate Change 2021: Summary for All. 2022. Available online: https://www.ipcc.ch/report/ar6/wg1/resources/external-resources (accessed on 2 December 2022).
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- National Bureau of Statistics, China Statistical Yearbook. 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 1 December 2022).
- Quan, C.; Han, S.; Utescher, T.; Zhang, C.; Liu, Y.S.C. Validation of temperature–precipitation based aridity index: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 86–95. [Google Scholar] [CrossRef]
- Zhang, R. Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Sci. Bull. 2015, 60, 1222–1224. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Wang, B.; Yan, Y.; Hao, Y.; Zhang, M. Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence. Clim. Dynam. 2019, 52, 5213–5228. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fan, M.; Lu, Y.; Liu, H.; Zhang, S.; Liu, X. Stable isotope record of middle Eocene summer monsoon and its instability in eastern China. Glob. Planet. Chang. 2019, 175, 103–112. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Yu, H.; Li, W.; Ye, Y.; Biswas, A. Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010. Sci. Rep. 2018, 8, 2702. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Du, W. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands. GISci. Remote Sens. 2017, 54, 881–897. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Abowaly, M.; Abu_Alkheir, A.; Gad, A. Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena 2014, 113, 70–78. [Google Scholar] [CrossRef]
- Arslan, H. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agric. Water Manag. 2012, 113, 57–63. [Google Scholar] [CrossRef]
- Kou, Z.X.; Yao, Y.H.; Hu, Y.F.; Zhang, B.P. Discussion on position of China’s north-south transitional zone by comparative analysis of mountain altitudinal belts. J. Mt. Sci. 2020, 17, 1901–1915. [Google Scholar] [CrossRef]
- Huo, J.; Liu, C.; Yu, X.; Jia, G.; Chen, L. Effects of watershed char and climate variables on annual runoff in different climatic zones in China. Sci. Total Environ. 2021, 754, 142157. [Google Scholar] [CrossRef]
- Du, H.; Wu, Z.; Zong, S.; Meng, X.; Wang, L. Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis. J. Geophys. Res. Atmos. 2013, 118, 6165–6174. [Google Scholar] [CrossRef]
- Chen, Z.; He, X.; Davi, N.K.; Zhang, X. A 258-year reconstruction of precipitation for southern Northeast China and the northern Korean peninsula. Clim. Chang. 2016, 139, 609–622. [Google Scholar] [CrossRef]
- Guo, L.; Luo, M.; Zhang, C.S.; Zeng, C.; Wang, S.Q.; Zhang, H.T. Spatial modelling of soil organic carbon stocks with combined principal component analysis and geographically weighted regression. J. Agric. Sci. 2018, 156, 774–784. [Google Scholar] [CrossRef]
- Zitko, V. Principal component analysis in the evaluation of environmental data. Mar. Pollut. Bull. 1994, 28, 718–722. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Minasny, B.; Wu, C. Mapping key soil properties to support agricultural production in Eastern China. Geoderma Reg. 2017, 10, 144–153. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Y.; Xie, X.; Li, X.; Zhang, X.; Shen, X. Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecol. Sin. 2011, 31, 212–216. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, H.; Zhao, R.; Wu, K.; Li, X.; Niu, B.; Li, J. Study on cultivated land quality evaluation from the perspective of farmland ecosystems. Ecol. Indic. 2022, 139, 108959. [Google Scholar] [CrossRef]
- Li, Q.; Li, A.; Yu, X.; Dai, T.; Peng, Y.; Yuan, D.; Zhao, B.; Tao, Q.; Wang, C.; Li, B.; et al. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. Sci. Total Environ. 2020, 698, 134320. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Wei, H.; Liu, Y.; Xiang, H.; Zhang, J.; Li, S.; Yang, J. Soil pH responses to simulated acid rain leaching in three agricultural soils. Sustainability 2019, 12, 280. [Google Scholar] [CrossRef] [Green Version]
- Kokulan, V.; Akinremi, O.; Moulin, A.P.; Kumaragamage, D. Importance of terrain attributes in relation to the spatial distribution of soil properties at the micro scale: A case study. Can. J. Soil Sci. 2018, 98, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Ayele, G.T.; Demissie, S.S.; Jemberrie, M.A.; Jeong, J.; Hamilton, D.P. Terrain effects on the spatial variability of soil physical and chemical properties. Soil Syst. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, S.; Xiao, Y.; Zhao, B.; Wang, C.; Li, B.; Gao, X.; Li, Y.; Bai, G.; Wang, Y.; et al. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena 2019, 175, 278–285. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norse, D.; Ju, X. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 2015, 209, 5–14. [Google Scholar] [CrossRef]
- De Caritat, P.; Cooper, M.; Wilford, J. The pH of Australian soils: Field results from a national survey. Soil Res. 2011, 49, 173–182. [Google Scholar] [CrossRef]
- Zeng, M.; de Vries, W.; Bonten, L.T.; Zhu, Q.; Hao, T.; Liu, X.; Xu, M.; Shi, X.; Zhang, F.; Shen, J. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, J.; Li, W.; Xu, J.; Brookes, P.C. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure. Environ. Sci. Pollut. Res. 2014, 21, 6623–6631. [Google Scholar] [CrossRef]
- Cui, L.; Liang, J.; Fu, H.; Zhang, L. The contributions of socioeconomic and natural factors to the acid deposition over China. Chemosphere 2020, 253, 126491. [Google Scholar] [CrossRef]
- Wang, X.; Cai, D.; Hoogmoed, W.B.; Oenema, O. Regional distribution of nitrogen fertilizer use and N-saving potential for improvement of food production and nitrogen use efficiency in China. J. Sci. Food Agric. 2011, 91, 2013–2023. [Google Scholar] [CrossRef]
- Tao, L.; Li, F.B.; Liu, C.S.; Feng, X.H.; Gu, L.L.; Wang, B.R.; Wen, S.L.; Xu, M.G. Mitigation of soil acidification through changes in soil mineralogy due to long-term fertilization in southern China. Catena 2019, 174, 227–234. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Lizaga, I.; Quijano, L.; Gaspar, L.; Ramos, M.C.; Navas, A. Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena 2019, 172, 516–527. [Google Scholar] [CrossRef]
- Han, D.; Wiesmeier, M.; Conant, R.T.; Kühnel, A.; Sun, Z.; Kögel-Knabner, I.; Hou, R.; Cong, P.; Liang, R.; Ouyang, Z. Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s. Glob. Chang. Biol. 2018, 24, 987–1000. [Google Scholar] [CrossRef] [PubMed]
Provinces | Number of Samples | Mean Annual Precipitation/mm | Mean Annual Temperature/°C | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | Max | Min | Mean | SD | ||
Heilongjiang | 67 | 627.81 | 384.41 | 524.44 | 57.50 | 5.30 | 0.52 | 3.69 | 1.19 |
Jilin | 55 | 922.15 | 345.87 | 592.14 | 148.30 | 7.65 | 2.99 | 5.68 | 0.88 |
Liaoning | 61 | 1074.22 | 456.65 | 655.87 | 139.88 | 11.40 | 6.29 | 8.96 | 1.25 |
Beijing | 9 | 619.17 | 528.04 | 588.79 | 45.57 | 13.13 | 11.43 | 12.00 | 0.85 |
Tianjin | 10 | 539.95 | 512.27 | 517.81 | 11.67 | 13.27 | 12.90 | 12.97 | 0.16 |
Hebei | 175 | 665.13 | 367.55 | 507.55 | 60.57 | 14.59 | 3.85 | 12.46 | 2.30 |
Shandong | 100 | 1042.03 | 499.60 | 675.77 | 111.53 | 14.82 | 6.03 | 13.43 | 1.05 |
Shanghai | 9 | 1238.71 | 1156.11 | 1202.00 | 43.54 | 17.09 | 17.02 | 17.06 | 0.04 |
Jiangsu | 75 | 1250.87 | 845.09 | 1056.09 | 132.59 | 17.02 | 14.13 | 15.68 | 0.85 |
Zhejiang | 74 | 1722.80 | 1276.17 | 1485.87 | 133.43 | 18.81 | 16.60 | 17.73 | 0.65 |
Fujian | 41 | 1861.69 | 1098.37 | 1525.52 | 236.35 | 21.95 | 12.61 | 19.40 | 2.02 |
Guangdong | 85 | 2425.68 | 1233.35 | 1703.81 | 243.43 | 23.50 | 19.92 | 22.02 | 1.02 |
Hainan | 17 | 2320.43 | 1050.52 | 1765.88 | 409.27 | 25.69 | 23.27 | 24.57 | 0.83 |
Different MAP Regions | <800 mm | >800 mm | >800 mm (Outliers Removed) |
---|---|---|---|
Heilongjiang, Liaoning, Jilin, Hebei, Beijing, Tianjin, Some Regions of Shandong | Some Regions of Heilongjiang, Some Regions of Liaoning, Some Regions of Shandong, Zhejiang, Fujian, Shanghai, Jiangsu, Guangdong, Hainan | Some Regions of Shandong, Zhejiang, Fujian, Shanghai, Jiangsu, Guangdong, Hainan | |
Number of samples | 448 | 330 | 318 |
Relationship with MAP | y = −5.802x + 23.143 r =−0.4631 ** | y = −5.2804x + 22.444 r = −0.6651 ** | y = −5.8672x + 24.324 r = −0.7029 ** |
Relationship with MAT | y = 0.1424x + 5.800 r = 0.6093 ** | y = −0.1183x + 8.0673 r = −0.5047 ** | y = −0.1798x + 9.2693 r = −0.6262 ** |
Relationship with P/T | y = −2.6923x + 12.047 r = −0.7041 ** | y = −3.2862x + 12.091 r = −0.3268 ** | y = −4.7658x + 14.836 r = −0.3912 ** |
Relationship with P*T | y = 1.4168x + 2.0132 r = 0.3951 ** | y = −2.4984x + 16.851 r = −0.5808 ** | y = −3.7572x + 22.455 r = −0.7156 ** |
Factor | Eigenvalue | Contribution Rate/% | Cumulative Contribution Rate/% |
---|---|---|---|
MAP | 2.76 | 68.87 | 68.87 |
MAT | 1.21 | 30.13 | 99.00 |
P/T | 0.04 | 1.00 | 100.00 |
P*T | 0.00 | 0.00 | 100.00 |
Source | df | SS | MS | F | p-Value |
---|---|---|---|---|---|
Between samples | 2.00 | 469.81 | 234.90 | 563.52 | 0.00 |
Within samples | 541.00 | 225.52 | 0.42 | ||
Total | 543.00 | 695.32 |
Variables | Coefficients | Standard Error | t-Stat | p-Value | Lower 95% | Upper 95% |
---|---|---|---|---|---|---|
Intercept | 23.4572 | 0.5175 | 45.3269 | 0.0000 | 22.4406 | 24.4738 |
MAP | −6.3930 | 0.2056 | −31.0990 | 0.0000 | −6.7968 | −5.9892 |
MAT | 0.1312 | 0.0080 | 16.3692 | 0.0000 | 0.1154 | 0.1469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Qiu, J.; Feng, X.; Hou, Y.; Wang, S.; Jia, S.; Liu, S.; Hou, X.; Dou, S. Spatial Distribution and Estimation Model of Soil pH in Coastal Eastern China. Int. J. Environ. Res. Public Health 2022, 19, 16855. https://doi.org/10.3390/ijerph192416855
Xie X, Qiu J, Feng X, Hou Y, Wang S, Jia S, Liu S, Hou X, Dou S. Spatial Distribution and Estimation Model of Soil pH in Coastal Eastern China. International Journal of Environmental Research and Public Health. 2022; 19(24):16855. https://doi.org/10.3390/ijerph192416855
Chicago/Turabian StyleXie, Xiansheng, Jianfei Qiu, Xinxin Feng, Yanlin Hou, Shuojin Wang, Shugang Jia, Shutian Liu, Xianda Hou, and Sen Dou. 2022. "Spatial Distribution and Estimation Model of Soil pH in Coastal Eastern China" International Journal of Environmental Research and Public Health 19, no. 24: 16855. https://doi.org/10.3390/ijerph192416855