Effects of Core Stability Training on Functional Movement Patterns in Tennis Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Methods
2.2.1. Functional Movement Screen Test
2.2.2. Core Stability Assessment
- In the lateral trunk muscles endurance test—the side bridge test (LTMET)—the subject is asked to assume the side bridge position during the test, with the body supported on the forearm and both feet. This test is used to assess of bilateral activity of hip and trunk stabilizers in the frontal plane (mainly isometric activity of the quadratus lumborum muscle) [24]
- The abdominal muscles endurance test (ABSET) evaluates the strength of the rectus abdominis muscle. The examined person is asked to assume a sit-up position with the hands placed at the back of the neck and a trunk flexion of 60°. Then the subject is asked to hold the position. The norms described by Donatelli are 134 s for women and 136 s for men [24]
- In the trunk extensors muscle endurance test (TEMET), the subject is asked to assume a prone position on the rehabilitation table with the body supported at the pelvis level and the arms crossed at the chest while the examiner stabilizes the pelvis and lower limbs. Then the subject is asked to extend the trunk and hold this position [24,25].
2.2.3. Study Procedures
2.2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, R.V.; Moreira, A.; Lodo, L.; Nosaka, K.; Coutts, A.J.; Aoki, M.S. Monitoring training loads, stress, immune-endocrine responses and performance in tennis players. Biol. Sport. 2013, 30, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Brouwers, J.; Sotiriadou, P.; De Bosscher, V. Sport-specific policies and factors that influence international success: The case of tennis. Sport Manag. Rev. 2015, 18, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Fernandez, J.; Saez de Villarreal, E.; Sanz-Rivas, D.; Moya, M. The Effects of 8-Week Plyometric Training on Physical Performance in Young Tennis Players. Pediatr. Exerc. Sci. 2016, 28, 77–86. [Google Scholar] [CrossRef]
- Reid, M.; Crespo, M.; Santilli, L.; Miley, D.; Dimmock, J. The importance of the International Tennis Federation’s junior boys’ circuit in the development of professional tennis players. J. Sports Sci. 2007, 25, 667–672. [Google Scholar] [CrossRef]
- Fu, M.C.; Ellenbecker, T.S.; Renstrom, P.A.; Windler, G.S.; Dines, D.M. Epidemiology of injuries in tennis players. Curr. Rev. Musculoskelet. Med. 2018, 11, 1–5. [Google Scholar] [CrossRef] [Green Version]
- McCurdie, I.; Smith, S.; Bell, P.H.; Batt, M.E. Tennis injury data from The Championships, Wimbledon, from 2003 to 2012. Br. J. Sports Med. 2017, 51, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Ayala, F.; Calderón-López, A.; Delgado-Gosálbez, J.C.; Parra-Sánchez, S.; Pomares-Noguera, C.; Hernández-Sánchez, S.; López-Valenciano, A.; De Ste Croix, M. Acute Effects of Three Neuromuscular Warm-Up Strategies on Several Physical Performance Measures in Football Players. PLoS ONE. 2017, 12, e0169660. [Google Scholar] [CrossRef]
- McCrary, J.M.; Ackermann, B.J.; Halaki, M. A systematic review of the effects of upper body warm-up on performance and injury. Br. J. Sports. Med. 2015, 49, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minthorn, L.M.; Fayson, S.D.; Stobierski, L.M.; Welch, C.E.; Anderson, B.E. The Functional Movement Screen’s Ability to Detect Changes in Movement Patterns After a Training Intervention. J. Sport Rehabil. 2015, 24, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional movement screening: The use of fundamental movements as an assessment of function—Part 2. Int. J. Sports Phys. Ther. 2014, 9, 549–563. [Google Scholar] [PubMed]
- Kiesel, K.; Plisky, P.J.; Voight, M.L. Can serious injury in professional football be predicted by a preseason Functional Movement Screen? N. Am. J. Sports Phys. Ther. 2007, 2, 147–158. [Google Scholar]
- Chorba, R.S.; Chorba, D.J.; Bouillon, L.E.; Overmyer, C.A.; Landis, J.A. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. N. Am. J. Sports Phys. Ther. 2010, 5, 47–54. [Google Scholar] [PubMed]
- O’Connor, F.G.; Deuster, P.A.; Davis, J.; Pappas, C.G.; Knapik, J.J. Functional movement screening: Predicting injuries in officer candidates. Med. Sci. Sports Exerc. 2011, 43, 2224–2230. [Google Scholar] [CrossRef]
- Bodden, J.G.; Needham, R.A.; Chockalingham, N. The effect of an intervention program on functional movement screen test scores in mixed martial arts athletes. J. Strength Cond. Res. 2015, 29, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Kiesel, K.; Plisky, P.; Butler, R. Functional movement screen test scores improve following a standardized off-season intervention program in professional football players. Scand. J. Med. Sci. Sports. 2011, 21, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Frost, D.M.; Beach, T.A.C.; Callaghan, J.P.; McGill, S.M. Using the Functional Movement Screen to evaluate the effective- ness of training. J. Strength Cond. Res. 2012, 26, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional movement screening: The use of fundamental movements as an assessment of function—Part 1. Int. J. Sports Phys. Ther. 2014, 9, 396–409. [Google Scholar] [PubMed]
- Minick, K.I.; Kiesel, K.B.; Burton, L.; Taylor, A.; Plisky, P.; Butler, R.J. Interrater reliability of the functional movement screen. J. Strength Cond. Res. 2010, 24, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Contreras, M.; Burton, L.C.; Plisky, P.J.; Goode, A.; Kiesel, K. Modifiable risk factors predict injuries in firefighters during training academies. Work 2013, 46, 11–17. [Google Scholar]
- Kiesel, K.B.; Butler, R.J.; Plisky, P.J. Prediction of injury by limited and asymmetrical fundamental movement patterns in american football players. J. Sport Rehabil. 2014, 23, 88–94. [Google Scholar] [CrossRef]
- Frohm, A.; Heijne, A.; Kowalski, J.; Svensson, P.; Myklebust, G. A nine-test screening battery for athletes: A reliability study. Scand. J. Med. Sci. Sports. 2012, 22, 306–315. [Google Scholar] [CrossRef]
- Onate, J.A.; Dewey, T.; Kollock, R.O.; Thomas, K.S.; Van Lunen, B.L.; DeMaio, M.; Ringleb, S.I. Real-time intersession and interrater reliability of the functional movement screen. J. Strength Cond. Res. 2012, 26, 408–415. [Google Scholar] [CrossRef]
- Parenteau, G.E.; Gaudreault, N.; Chambers, S.; Boisvert, C.; Grenier, A.; Gagné, G.; Balg, F. Functional movement screen test: A reliable screening test for young elite ice hockey players. Phys. Ther. Sport. 2014, 15, 169–175. [Google Scholar] [CrossRef]
- Donatelli, R.; Carp, K. Chapter 12—Evaluation of the Trunk and Hip Core. In Sports-Specific Rehabilitation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 193–222. [Google Scholar]
- Biering-Sørensen, F. Physical measurements as risk indicators for low-back trouble over a one-year period. Spine 1984, 9, 106–119. [Google Scholar] [CrossRef]
- Nesser, T.W.; Huxel, K.C.; Tincher, J.L.; Okada, T. The relationship between core stability and performance in division I football players. J. Strength Cond. 2008, 22, 1750–1754. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Shimoura, K.; Nakayama, Y.; Tashiro, Y.; Hotta, T.; Suzuki, Y.; Tasaka, S.; Matsushita, T.; Matsabura, K.; Kawagoe, M.; Sonoda, T.; et al. Association Between Functional Movement Screen Scores and Injuries in Male College Basketball Players. J. Sport Rehabil. 2019, 29, 621–625. [Google Scholar] [CrossRef]
- Stobierski, L.M.; Fayson, S.D.; Minthorn, L.M.; Valovich McLeod, T.C.; Welch, C.E. Reliability of clinician scoring of the functional movement screen to assess movement patterns. J. Sport Rehabil. 2015, 24, 219–222. [Google Scholar] [CrossRef]
- Mahdieh, L.; Zolaktaf, V.; Karimi, M.T. Effects of dynamic neuromuscular stabilization (DNS) training on functional movements. Hum. Mov. Sci. 2020, 70, 102568. [Google Scholar] [CrossRef]
- Šćepanović, T.; Protić-Gava, B.; Sporiš, G.; Rupčić, T.; Miljković, Z.; Liapikos, K.; Mačak, D.; Madić, D.M.; Trajković, N. Short-Term Core Strengthening Program Improves Functional Movement Score in Untrained College Students. Int. J. Environ. Res. Public Health. 2020, 17, 8669. [Google Scholar] [CrossRef]
- Bonazza, N.A.; Smuin, D.; Onks, C.A.; Silvis, M.L.; Dhawan, A. Reliability, Validity, and Injury Predictive Value of the Functional Movement Screen: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2017, 45, 725–732. [Google Scholar] [CrossRef]
- Asgari, M.; Alizadeh, S.; Sendt, A.; Jaitner, T. Evaluation of the Functional Movement Screen (FMS) in Identifying Active Females Who are Prone to Injury. A Systematic Review. Sports Med. Open. 2021, 7, 85. [Google Scholar] [CrossRef]
- Šiupšinskas, L.; Garbenytė-Apolinskienė, T.; Salatkaitė, S.; Gudas, R.; Trumpickas, V. Association of pre-season musculoskeletal screening and functional testing with sports injuries in elite female basketball players. Sci. Rep. 2019, 9, 9286. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Geok, S.K.; Bai, X.; Bu, T.; Norjali Wazir, M.R.; Talib, O.; Liu, W.; Zhan, C. Effect of Exercise Training on Physical Fitness Among Young Tennis Players: A Systematic Review. Front. Public Health. 2022, 10, 843021. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; Granacher, U.; Sanz-Rivas, D.; Sarabia Marín, J.M.; Hernandez-Davo, J.L.; Moya, M. Sequencing Effects of Neuromuscular Training on Physical Fitness in Youth Elite Tennis Players. J. Strength Cond. Res. 2018, 32, 849–856. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Penedo-Jamardo, E.; González-Víllora, S. Effect of the 11+ injury prevention programme on fundamental movement patterns in soccer players. Biol. Sport. 2018, 35, 229–236. [Google Scholar] [CrossRef]
- Hoover, D.L.; Killian, C.B.; Tinius, R.A.; Bellar, D.M.; Wilkinson, S.G.; Esslinger, F.T.; Judge, L.W. Predictive Validity of a Functional Movement Screen in Professional Basketball Players. Medicina 2020, 56, 724. [Google Scholar] [CrossRef]
- Koźlenia, D.; Domaradzki, J. The Impact of Physical Performance on Functional Movement Screen Scores and Asymmetries in Female University Physical Education Students. Int. J. Environ. Res. Public Health. 2022, 19, 12197. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; García-Tormo, V.; Santos-Rosa, F.J.; Teixeira, A.S.; Nakamura, F.Y.; Granacher, U.; Sanz-Rivas, D. The Effect of a Neuromuscular vs. Dynamic Warm-up on Physical Performance in Young Tennis Players. J. Strength Cond. Res. 2020, 34, 2776–2784. [Google Scholar] [CrossRef]
Women (n = 74) | Men (n = 86) | All (n = 160) | |
---|---|---|---|
Age (±; SD) | 20.29 ± 1.83 | 20.26 ± 1.55 | 20.27 ± 1.68 |
Body weight (±; SD) | 54.80 ± 4.41 | 62.69 ± 7.14 | 59.04 ± 7.19 |
Height (±; SD) | 164.86 ± 3.77 | 171.75 ± 6.04 | 168.57 ± 6.16 |
BMI (n; %) | |||
Normal | 74; 100.00 | 86; 100.00 | 160; 100.00 |
Overweight | 0; 00.00 | 0; 00.00 | 0; 00.00 |
Obesity | 0; 00.00 | 0; 00.00 | 0; 00.00 |
Training experience (n; %) | |||
1–3 years | 35; 47.29 | 41; 47.67 | 76; 47.50 |
4 and more years | 39; 52.71 | 45; 52.33 | 84; 52.50 |
Before (Study 1) | After (Study 2) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Women (n = 74) | Men (n = 86) | Women (n = 74) | Men (n = 86) | All (n = 160) | |||||||||||||||||
III | II | I | 0 | x~ | III | II | I | 0 | x~ | III | II | I | 0 | x~ | III | II | I | 0 | x~ | p * | |
DS (n) | 3 | 28 | 43 | - | 1.46 | 0 | 36 | 50 | - | 1.42 | 29 | 40 | 5 | - | 2.32 | 37 | 33 | 16 | - | 2.24 | p < 0.001 |
HS (n) | - | ||||||||||||||||||||
L | 32 | 30 | 12 | - | 2.27 | 28 | 47 | 11 | - | 2.20 | 43 | 25 | 6 | - | 2.50 | 44 | 38 | 4 | - | 2.47 | p < 0.001 |
R InLL (n) | 35 | 35 | 4 | - | 2.42 | 29 | 51 | 6 | - | 2.27 | 48 | 26 | - | - | 2.65 | 41 | 44 | 1 | - | 2.47 | p < 0.001 |
L | 36 | 31 | 7 | - | 2.39 | 31 | 45 | 10 | - | 2.24 | 37 | 35 | 2 | - | 2.47 | 38 | 47 | 1 | - | 2.43 | p < 0.001 |
R | 33 | 37 | 4 | - | 2.39 | 30 | 56 | - | - | 2.35 | 35 | 37 | 2 | - | 2.45 | 33 | 53 | - | 2.38 | p < 0.001 | |
SM (n) | |||||||||||||||||||||
L | 48 | 19 | 7 | - | 2.55 | 51 | 25 | 10 | - | 2.48 | 54 | 19 | 1 | - | 2.72 | 52 | 31 | 3 | - | 2.57 | p < 0.001 |
R | 38 | 27 | 9 | - | 2.39 | 47 | 29 | 10 | - | 2.43 | 49 | 22 | 3 | - | 2.65 | 50 | 32 | 4 | - | 2.53 | p < 0.001 |
ASLR (n) | |||||||||||||||||||||
L | 31 | 31 | 11 | 1 | 2.24 | 45 | 29 | 6 | 6 | 2.31 | 31 | 40 | 3 | - | 2.41 | 46 | 35 | 5 | - | 2.48 | p < 0.001 |
R | 15 | 28 | 30 | 1 | 1.77 | 32 | 29 | 12 | 3 | 2.18 | 30 | 35 | 9 | - | 2.32 | 35 | 44 | 7 | - | 2.33 | p < 0.001 |
TSPU (n) | 34 | 25 | 7 | 8 | 2.15 | 25 | 40 | 11 | 10 | 1.93 | 34 | 28 | 9 | 3 | 2.34 | 30 | 45 | 11 | - | 2.22 | p < 0.001 |
RS (n) | |||||||||||||||||||||
L | 31 | 43 | - | - | 2.42 | 46 | 39 | 1 | - | 2.52 | 39 | 35 | - | - | 2.59 | 60 | 26 | - | - | 2.70 | p < 0.001 |
R | 31 | 43 | - | - | 2.42 | 36 | 50 | - | - | 2.42 | 52 | 22 | - | - | 2.73 | 48 | 38 | - | - | 2.44 | p < 0.001 |
TOTAL (±; SD) | 14.58 ± 2.91 | 14.44 ± 2.76 | 17.20 ± 1.68 | 16.91 ± 1.36 | p < 0.001 |
Before (Study 1) | After (Study 2) | p * | |||
---|---|---|---|---|---|
Women (n = 74) | Men (n = 86) | Women (n = 74) | Men (n = 86) | All (n = 160) | |
LTMET (±; SD) | 69.14 ± 7.69 | 82.83 ± 8.10 | 77.27 ± 8.92 | 95.69 ± 9.25 | p < 0.001 |
ABSET (±; SD) | 127.53 ± 6.46 | 128.23 ± 8.19 | 137.41 ± 9.22 | 143.37 ± 12.35 | p < 0.001 |
TEMET (±; SD) | 171.929 ± 11.27 | 138.72 ± 14.26 | 185.5 ± 12.85 | 160.02 ± 19.58 | p < 0.001 |
Training Experience | ||||||
---|---|---|---|---|---|---|
1–3 Years (n = 76) | 4 and More Years (n = 84) | |||||
Before (Study 1) | After (Study 2) | p * | Before (Study 1) | After (Study 2) | p * | |
LTMET (±; SD) | 75.61 ± 10.63 | 82.96 ± 13.46 | p < 0.001 | 77.29 ± 10.27 | 90.98 ± 11.21 | p < 0.001 |
ABSET (±; SD) | 127.69 ± 7.34 | 138.14 ± 13.81 | p < 0.001 | 128.09 ± 7.55 | 142.84 ± 8.06 | p < 0.001 |
TEMET (±; SD) | 152.63 ± 20.36 | 166.53 ± 22.25 | p < 0.001 | 155.38 ± 21.67 | 176.57 ± 18.78 | p < 0.001 |
Training Experience | ||||||
---|---|---|---|---|---|---|
1–3 Years (n = 76) | 4 and More Years (n = 84) | |||||
Before (Study 1) | After (Study 2) | p * | Before (Study 1) | After (Study 2) | p * | |
TOTAL FMS (±; SD) | 12.55 ± 2.55 | 16.32 ± 1.25 | p < 0.001 | 16.27 ± 1.67 | 17.70 ± 1.45 | p < 0.001 |
Training Experience | |||
---|---|---|---|
1–3 Years (n = 76) | 4 and More Years (n = 84) | p * | |
All (n = 160) | |||
Before (study 1) | |||
TOTAL FMS (±; SD) | 12.55 ± 2.55 | 16.27 ± 1.67 | p < 0.001 |
LTMET (±; SD) | 75.61 ± 10.63 | 77.29 ± 10.27 | p < 0.188 |
ABSET (±; SD) | 127.69 ± 7.34 | 128.09 ± 7.55 | p < 0.830 |
TEMET (±; SD) | 152.63 ± 20.36 | 155.38 ± 21.67 | p < 0.414 |
After (study2) | |||
TOTAL FMS (±; SD) | 16.32 ± 1.25 | 17.70 ± 1.45 | p < 0.001 |
LTMET (±; SD) | 82.96 ± 13.46 | 90.98 ± 11.21 | p < 0.001 |
ABSET (±; SD) | 138.14 ± 13.81 | 142.84 ± 8.06 | p < 0.001 |
TEMET (±; SD) | 166.53 ± 22.25 | 176.57 ± 18.78 | p < 0.001 |
R-Spearman | p * | |
---|---|---|
TOTAL FMS & LTMET | 0.450 | p < 0.001 |
TOTAL FMS & ABSET | 0.450 | p < 0.001 |
TOTAL FMS & TEMET | 0.690 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewska, J.; Kołodziej-Lackorzyńska, G.; Cyran-Grzebyk, B.; Szymczyk, D.; Kołodziej, K.; Wądołkowski, P. Effects of Core Stability Training on Functional Movement Patterns in Tennis Players. Int. J. Environ. Res. Public Health 2022, 19, 16033. https://doi.org/10.3390/ijerph192316033
Majewska J, Kołodziej-Lackorzyńska G, Cyran-Grzebyk B, Szymczyk D, Kołodziej K, Wądołkowski P. Effects of Core Stability Training on Functional Movement Patterns in Tennis Players. International Journal of Environmental Research and Public Health. 2022; 19(23):16033. https://doi.org/10.3390/ijerph192316033
Chicago/Turabian StyleMajewska, Joanna, Gabriela Kołodziej-Lackorzyńska, Barbara Cyran-Grzebyk, Daniel Szymczyk, Krzysztof Kołodziej, and Piotr Wądołkowski. 2022. "Effects of Core Stability Training on Functional Movement Patterns in Tennis Players" International Journal of Environmental Research and Public Health 19, no. 23: 16033. https://doi.org/10.3390/ijerph192316033
APA StyleMajewska, J., Kołodziej-Lackorzyńska, G., Cyran-Grzebyk, B., Szymczyk, D., Kołodziej, K., & Wądołkowski, P. (2022). Effects of Core Stability Training on Functional Movement Patterns in Tennis Players. International Journal of Environmental Research and Public Health, 19(23), 16033. https://doi.org/10.3390/ijerph192316033