Radon Exposure in the Underground Tourist Route–Historic Silver Mine in Tarnowskie Góry, Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Measurement Site
2.2. Measurement Method
3. Results
3.1. Radon Concentration
3.2. Dose Estimation
4. Conclusions
- The measured values of radon concentrations vary in a wide range from 80 to 2280 Bq m, with the reference value (300 Bq m) being exceeded in most sampling points.
- Seasonal variability in radon concentration was observed: the lowest values were measured in winter and the highest in summer.
- The average dose for tourists is 2 µSv/tour and for workers 3.3 mSv, assuming an annual working time of 1800 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keith, S.; Doyle, J.R.; Harper, C.; Mumtaz, M.; Tarrago, O.; Wohlers, D.W.; Diamond, G.L.; Citra, M.; Barber, L.E. Toxicological Profile for Radon; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012. [Google Scholar]
- Porstendörfer, J. Properties and behaviour of radon and thoron and their decay products in the air. J. Aerosol Sci. 1994, 25, 219–263. [Google Scholar] [CrossRef]
- Ludewig, P.; Lorenser, E. Untersuchung der Grubenluft in den Schneeberger Gruben auf den Gehalt an Radiumemanation. Zeitschrift für Physik 1924, 22, 178–185. [Google Scholar] [CrossRef]
- EU. European Commission (EC). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, etc. Off. J. Eur. Union 2013, 57, 1–73. [Google Scholar]
- Ustawa z Dnia 29 Listopada 2000 r. Prawo Atomowe [Act of 29 November 2000. Atomic Law], Dz.U. 2001 nr 3 poz. 18. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20010030018 (accessed on 23 November 2022).
- Lorenz, E. Radioactivity and lung cancer; a critical review of lung cancer in the miners of Schneeberg and Joachimsthal. J. Natl. Cancer Inst. 1944, 5, 1–15. [Google Scholar]
- Morrison, H.I.; Semenciw, R.M.; Mao, Y.; Wigle, D.T. Cancer mortality among a group of fluorspar miners exposed to radon progeny. Am. J. Epidemiol. 1988, 128, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Harting, G. Der Lungenkrebs, die Bergkrankheit in den Schneeberger Gruben. Vrtijschr. Gerlichtl. Med. 1979, 30, 296–309. [Google Scholar]
- Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol. 2016, 7, 54–86. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Thomas, J.J. Prehistory of the czech radon program. Radiat. Prot. Dosim. 2020, 191, 121–124. [Google Scholar] [CrossRef]
- Fijałkowska–Lichwa, L. Estimation of radon risk exposure in selected underground workplaces in the Sudetes (southern Poland). J. Radiat. Res. Appl. Sci. 2015, 8, 334–353. [Google Scholar] [CrossRef] [Green Version]
- Tchorz-Trzeciakiewicz, D.E.; Parkitny, T. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route “Coal Mine” (SW Poland). J. Environ. Radioact. 2015, 149, 90–98. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Zloty Stok (Sudety Mountains, SW Poland). J. Environ. Radioact. 2001, 57, 87–103. [Google Scholar] [CrossRef]
- Patiris, D.L.; Blekas, K.; Ioannides, K.G. TRIAC II. A MatLab code for track measurements from SSNT detectors. Comput. Phys. Commun. 2007, 177, 329–338. [Google Scholar] [CrossRef]
- Patiris, D.L.; Ioannides, K.G. Discriminative detection of deposited radon daughters on CR-39 track detectors using TRIAC II code. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2009, 267, 2440–2448. [Google Scholar] [CrossRef]
- Sainz, C.; Fábrega, J.; Rábago, D.; Celaya, S.; Fernandez, A.; Fuente, I.; Fernandez, E.; Quindos, J.; Arteche, J.L.; Quindos, L. Use of Radon and CO2 for the Identification and Analysis of Short-Term Fluctuations in the Ventilation of the Polychrome Room Inside the Altamira Cave. Int. J. Environ. Res. Public Health 2022, 19, 3662. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Al-Naggar, T.I.; Alhandhal, R.H.; Albargi, H.B. Registration of alpha particles using CR-39 nuclear detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1042, 167419. [Google Scholar] [CrossRef]
- Cardoso Takahashi, L.; de Oliveira Santos, T.; Marques Pinheiro, R.M.; Gomes Passos, R.; Rocha, Z. Radon dosimetry using Solid State Nuclear Track Detectors in different environments: A review. Appl. Radiat. Isot. 2022, 186, 110217. [Google Scholar] [CrossRef]
- Salazar-Carballo, P.A.; López-Pérez, M.; Martín-González, M.E.; Suarez, F.H.; Martín-Luis, M.C. Radon dynamics and effective dose estimation in a touristic volcanic cave: La Cueva del Viento, Tenerife (Canary Islands, Spain). GeoHealth 2022. [Google Scholar] [CrossRef]
- Dziȩgiel, M. Podziemne trasy turystyczne w Tarnowskich Górach (Górny Śla̧sk). Geotourism/Geoturystyka 2008, 15, 51. [Google Scholar] [CrossRef]
- Panstowy Instutyt Geologiczny. Objaśnienia do Mapy Geośrodowiskowej Polski 1: 50000 (Arkusz Bytom); Technical Report; Panstowy Instutyt Geologiczny: Warsaw, Poland, 2004. [Google Scholar]
- Historic Silver Mine. Available online: https://kopalniasrebra.pl/ (accessed on 1 September 2022).
- Chałupnik, S.; Skubacz, K.; Wysocka, M.; Mazur, J.; Bonczyk, M.; Kozak, K.; Grza̧dziel, D.; Urban, P.; Tchorz-Trzeciakiewicz, D.; Kozłowska, B.; et al. Radon intercomparison tests-Katowice, 2016. Nukleonika 2020, 65, 127–132. [Google Scholar] [CrossRef]
- Smetanova, I.; Holy, K.; Zelinka, J.; Omelka, J. Temporal variability of radon in the atmosphere of Domica and Va ecka Karst caves (Slovakia). Radiat. Prot. Dosim. 2014, 160, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Font, L.; Baixeras, C.; Moreno, V. Indoor radon levels in underground workplaces of Catalonia, Spain. Radiat. Meas. 2008, 43, 3–6. [Google Scholar] [CrossRef]
- Espinosa, G.; Golzarri, J.I.; Gammage, R.B.; Sajo-Bohus, L.; Viccon-Pale, J.; Signoret-Poillon, M. Seasonal variation measurements of radon levels in caves using SSNTD method. Radiat. Meas. 2008, 43, 364–368. [Google Scholar] [CrossRef]
- Solomon, S.B.; Langroo, R.; Lyons, R.G.; James, J.M. Radon exposure to tour guides in Australian show caves. Environ. Int. 1996, 22, 409–413. [Google Scholar] [CrossRef]
- Wysocka, M. Radon in Jurassic caves of the Kraków-Czestochowa Upland. Geochem. J. 2011, 45, 447–453. [Google Scholar] [CrossRef]
- Rozporza̧dzenie Ministra Energii z Dnia 23 Listopada 2016 Roku w Sprawie Szczegółowych Wymagań Dotycza̧cych Prowadzenia Ruchu Podziemnych Zakładów Górniczych [Regulation of the Minister of Energy of November 23, 2016 on Detailed Requirements for Operating Underground Mines], Dz.U. 2017 poz. 1118. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118 (accessed on 23 November 2022).
- Rozporza̧dzenie Rady Ministrów z Dnia 11 Sierpnia 2021 r. w Sprawie Wskaźników Pozwalających na Wyznaczenie Dawek Promieniowania Jonizującego Stosowanych Przy Ocenie Narażenia na Promieniowanie Jonizujące [Regulation of the Council of Ministers of August 11, 2021 on Indicators Enabling the Determination of Ionizing Radiation Doses Used in the Assessment of Exposure to Ionizing Radiation], Dz.U. 2021 poz. 1657. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001657 (accessed on 23 November 2022).
- Paquet, F.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Marsh, J.; Fell, T.P.; Smith, T.; Nosske, D.; Eckerman, K.F.; Berkovski, V. ICRP publication 137: Occupational intakes of radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef]
Measurement Point | 9 February 2021–19 May 2021 (Spring) | 19 May 2021–26 August 2021 (Summer) | 26 August 2021–25 November 2021 (Autumn) | 25 November 2021–3 March 2022 (Winter) |
---|---|---|---|---|
1. | 160 ± 40 | 830 ± 190 | 530 ± 130 | 80 ± 20 |
2. | 290 ± 80 | 1340 ± 310 | 820 ± 190 | 100 ± 20 |
3. | 450 ± 110 | 1460 ± 330 | 830 ± 190 | 160 ± 40 |
4. | 288 ± 29 | 1280 ± 290 | 740 ± 170 | 120 ± 30 |
5. | 530 ± 130 | 1780 ± 410 | 1190 ± 270 | 280 ± 60 |
6. | 770 ± 180 | 1610 ± 370 | 1210 ± 280 | 280 ± 60 |
7. | 790 ± 190 | 1630 ± 370 | 1150 ± 260 | 280 ± 60 |
8. | 810 ± 190 | 1750 ± 400 | 1490 ± 340 | 290 ± 70 |
9. | 1340 ± 310 | 1670 ± 380 | 1430 ± 330 | 670 ± 150 |
10. | 1210 ± 280 | 1550 ± 350 | 1320 ± 300 | 610 ± 140 |
11. | 990 ± 230 | 1280 ± 290 | 1620 ± 370 | 520 ± 120 |
12. | 1170 ± 270 | 1470 ± 330 | 1590 ± 360 | 860 ± 190 |
13. | 910 ± 210 | 1260 ± 290 | 1600 ± 360 | 470 ± 110 |
14. | 490 ± 120 | 810 ± 190 | 650 ± 150 | 210 ± 50 |
15. | 740 ± 170 | 1390 ± 320 | 1140 ± 260 | 190 ± 40 |
16. | 640 ± 150 | 1310 ± 300 | 1100 ± 250 | 240 ± 50 |
17. | 780 ± 180 | 1420 ± 320 | 840 ± 190 | 190 ± 80 |
18. | 1030 ± 240 | 1360 ± 310 | 1700 ± 390 | 290 ± 70 |
19. | 1560 ± 360 | 1580 ± 360 | 1860 ± 420 | 770 ± 170 |
20. | 1640 ± 380 | 1460 ± 330 | 1980 ± 450 | 850 ± 190 |
21. | 620 ± 150 | 1450 ± 330 | 1420 ± 330 | 350 ± 80 |
22. | 700 ± 170 | 1290 ± 290 | 1010 ± 230 | 250 ± 60 |
23. | 600 ± 140 | 1440 ± 330 | 1050 ± 240 | 170 ± 40 |
24. | 690 ± 160 | 1980 ± 450 | 1230 ± 280 | 320 ± 70 |
25. | 800 ± 190 | 1850 ± 420 | 1280 ± 290 | 260 ± 60 |
26. | 680 ± 160 | 1790 ± 410 | 1230 ± 280 | 280 ± 60 |
27. | 800 ± 190 | 2280 ± 520 | 1850 ± 420 | 310 ± 70 |
28. | 1040 ± 240 | 1860 ± 420 | 2180 ± 490 | 270 ± 60 |
29. | 1990 ± 460 | 1960 ± 450 | 1920 ± 430 | 1780 ± 400 |
30. | 1220 ± 280 | 1250 ± 290 | 1480 ± 340 | 470 ± 110 |
Season | Spring | Summer | Autumn | Winter | Annual Average |
---|---|---|---|---|---|
Median (Bq m) | 785 | 1460 | 1255 | 280 | 1035 |
Arithmetic mean (Bq m) | 858 | 1513 | 1315 | 397 | 1021 |
Standard Deviation (Bq m) | 411 | 315 | 416 | 337 | 568 |
Geometric mean (Bq m) | 759 | 1479 | 1246 | 313 | 813 |
Geometric standard deviation | 2 | 1 | 1 | 2 | 2 |
Minimum (Bq m) | 160 | 810 | 530 | 80 | 80 |
Maximum (Bq m) | 1990 | 2280 | 2180 | 1780 | 2280 |
Season | Autumn | Spring | Summer |
---|---|---|---|
Spring | 3.5 × 10 | - | - |
Summer | 0.25 | 2.7 × 10 | - |
Winter | 1.7 × 10 | 3.0 × 10 | <2 × 10 |
Season | Mean Difference | 95% Confidence Interval of the Difference (Lower) | 95% Confidence Interval of the Difference (Upper) | p Value Adjustment |
---|---|---|---|---|
Spring–Autumn | −457.00 | −707.64 | −206.36 | <<0.05 |
Summer–Autumn | 198.33 | −52.31 | 448.97 | 0.17 |
Winter–Autumn | −917.33 | −1167.97 | −666.69 | <<0.05 |
Summer–Spring | 655.33 | 404.69 | 905.97 | <<0.05 |
Winter–Spring | −460.33 | −710.97 | −209.69 | <<0.05 |
Winter–Summer | −1115.67 | −1366.31 | −865.03 | <<0.05 |
Season | Tourists (60 min) | Workers (1800 h) |
---|---|---|
Spring | 1.5 µSv | 2.8 mSv |
Summer | 2.7 µSv | 4.9 mSv |
Autumn | 2.4 µSv | 4.3 mSv |
Winter | 0.6 µSv | 1.1 mSv |
Average | 1.8 µSv | 3.3 mSv |
Annual Effective Dose [mSv] | Calculated Working Time [h] |
---|---|
1 | 550 |
6 | 3270 |
20 | 10,900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grygier, A.; Skubacz, K.; Wysocka, M.; Bonczyk, M.; Piech, A.; Janik, M. Radon Exposure in the Underground Tourist Route–Historic Silver Mine in Tarnowskie Góry, Poland. Int. J. Environ. Res. Public Health 2022, 19, 15778. https://doi.org/10.3390/ijerph192315778
Grygier A, Skubacz K, Wysocka M, Bonczyk M, Piech A, Janik M. Radon Exposure in the Underground Tourist Route–Historic Silver Mine in Tarnowskie Góry, Poland. International Journal of Environmental Research and Public Health. 2022; 19(23):15778. https://doi.org/10.3390/ijerph192315778
Chicago/Turabian StyleGrygier, Agata, Krystian Skubacz, Małgorzata Wysocka, Michał Bonczyk, Adam Piech, and Mirosław Janik. 2022. "Radon Exposure in the Underground Tourist Route–Historic Silver Mine in Tarnowskie Góry, Poland" International Journal of Environmental Research and Public Health 19, no. 23: 15778. https://doi.org/10.3390/ijerph192315778
APA StyleGrygier, A., Skubacz, K., Wysocka, M., Bonczyk, M., Piech, A., & Janik, M. (2022). Radon Exposure in the Underground Tourist Route–Historic Silver Mine in Tarnowskie Góry, Poland. International Journal of Environmental Research and Public Health, 19(23), 15778. https://doi.org/10.3390/ijerph192315778