Does REM Sleep-Dependent Obstructive Sleep Apnea Have Clinical Significance?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haba-Rubio, J.; Janssens, J.P.; Rochat, T.; Sforza, E. Rapid eye movement-related disordered breathing: Clinical and polysomnographic features. Chest 2005, 128, 3350–3357. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.B.; Dostal, J.; Ioachimescu, O.; Budur, K. The effects of gender and age on REM-related sleep-disordered breathing. Sleep Breath. Schlaf Atm. 2008, 12, 259–264. [Google Scholar] [CrossRef]
- Koo, B.B.; Patel, S.R.; Strohl, K.; Hoffstein, V. Rapid eye movement-related sleep-disordered breathing: Influence of age and gender. Chest 2008, 134, 1156–1161. [Google Scholar] [CrossRef]
- Resta, O.; Carpanano, G.E.; Lacedonia, D.; Di Gioia, G.; Giliberti, T.; Stefano, A.; Bonfitto, P. Gender difference in sleep profile of severely obese patients with obstructive sleep apnea (OSA). Respir. Med. 2005, 99, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Conwell, W.; Patel, B.; Doeing, D.; Pamidi, S.; Knutson, K.L.; Ghods, F.; Mokhlesi, B. Prevalence, clinical features, and CPAP adherence in REM-related sleep-disordered breathing: A cross-sectional analysis of a large clinical population. Sleep Breath. Schlaf Atm. 2012, 16, 519–526. [Google Scholar] [CrossRef]
- Lee, S.A.; Paek, J.H.; Han, S.H. REM-related sleep-disordered breathing is associated with depressive symptoms in men but not in women. Sleep Breath. Schlaf Atm. 2016, 20, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Mokhlesi, B.; Punjabi, N.M. "REM-related" obstructive sleep apnea: An epiphenomenon or a clinically important entity? Sleep 2012, 35, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Chami, H.A.; Baldwin, C.M.; Silverman, A.; Zhang, Y.; Rapoport, D.; Punjabi, N.M.; Gottlieb, D.J. Sleepiness, quality of life, and sleep maintenance in REM versus non-REM sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2010, 181, 997–1002. [Google Scholar] [CrossRef]
- Pamidi, S.; Knutson, K.L.; Ghods, F.; Mokhlesi, B. Depressive symptoms and obesity as predictors of sleepiness and quality of life in patients with REM-related obstructive sleep apnea: Cross-sectional analysis of a large clinical population. Sleep Med. 2011, 12, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Lee, J.H.; Son, H.K.; Lee, S.H.; Shin, C.; Johns, M.W. The reliability and validity of the Korean version of the Epworth sleepiness scale. Sleep Breath. Schlaf Atm. 2011, 15, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.I.; Kim, D.H.; Lee, M.Y.; Cho, Y.W. The reliability and validity of the Korean version of the Pittsburgh Sleep Quality Index. Sleep Breath. Schlaf Atm. 2012, 16, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Song, M.L.; Morin, C.M. Validation of a Korean version of the insomnia severity index. J. Clin. Neurol. 2014, 10, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.K.J.; Park, Y.; Bai, D.; Lee, S.; Ahn, H. study on the reliability and the validity of Korean version of the Beck Depression Inventory-II (BDI-II). J. Korean Soc. Biol. Psychiatry 2008, 14, 201–212. [Google Scholar]
- Berry, R.B.; Brooks, R. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification, Version 2.0; American Academy of Sleep Medicine: Darien, IL, USA, 2012. [Google Scholar]
- O’Connor, C.; Thornley, K.S.; Hanly, P.J. Gender differences in the polysomnographic features of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2000, 161, 1465–1472. [Google Scholar] [CrossRef]
- Oksenberg, A.; Arons, E.; Nasser, K.; Vander, T.; Radwan, H. REM-related obstructive sleep apnea: The effect of body position. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2010, 6, 343–348. [Google Scholar] [CrossRef]
- Trinder, J.; Kay, A.; Kleiman, J.; Dunai, J. Gender differences in airway resistance during sleep. J. Appl. Physiol. 1997, 83, 1986–1997. [Google Scholar] [CrossRef] [PubMed]
- Popovic, R.M.; White, D.P. Upper airway muscle activity in normal women: Influence of hormonal status. J. Appl. Physiol. 1998, 84, 1055–1062. [Google Scholar] [CrossRef]
- Shahar, E.; Redline, S.; Young, T.; Boland, L.L.; Baldwin, C.M.; Nieto, F.J.; O'Connor, G.T.; Rapoport, D.M.; Robbins, J.A. Hormone replacement therapy and sleep-disordered breathing. Am. J. Respir. Crit. Care Med. 2003, 167, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Haji, A.; Ohi, Y.; Takeda, R. Effects of progesterone on apneic events during behaviorally defined sleep in male rats. Life Sci. 2005, 78, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Zwillich, C.W.; Natalino, M.R.; Sutton, F.D.; Weil, J.V. Effects of progesterone on chemosensitivity in normal men. J. Lab. Clin. Med. 1978, 92, 262–269. [Google Scholar]
- Brooks, L.J.; Strohl, K.P. Size and mechanical properties of the pharynx in healthy men and women. Am. Rev. Respir. Dis. 1992, 146, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Han, K.; Kang, Y.M.; Kim, S.-O.; Cho, Y.K.; Ko, K.S.; Park, J.-Y.; Lee, K.-U.; Koh, E.H.; Diabetes Fact Sheet of the Korean Diabetes Association. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009–2013). PLoS ONE 2018, 13, e0194490. [Google Scholar] [CrossRef] [PubMed]
- Fryar, C.D.; Kruszan-Moran, D.; Gu, Q.; Ogden, C.L. Mean body weight, weight, waist circumference, and body mass index among adults: United States, 1999–2000 through 2015–2016. Natl. Health Stat. Report 2018, 122, 1–16. [Google Scholar]
- Byun, J.-I.; Kim, D.-H.; Kim, J.-S.; Shin, W.C. Usefulness of using alternative Body-Mass Index and neck circumference criteria for STOP-Bang questionnaire in screening South Korean obstructive sleep apnea patients. Sleep Med. Res. 2020, 11, 38–43. [Google Scholar] [CrossRef]
- Carskadon MA, D.W. Normal human sleep: An overview. In Principles and Practice of Sleep Medicine, 5th ed.; Kryger, M.H., Roth, T., Dement, W.C., Eds.; Elsevier Saunders: St. Louis, MA, USA, 2011; pp. 12–16. [Google Scholar]
- Moon, H.L.S.; Kim, D.H.; Kim, D.E.; Hwang, S.H.; Cho, Y.W. Clinical characteristics of REM-dependent obstructive sleep apnea in Korean adults. J. Korean Neurol. Assoc. 2016, 34, 124–129. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Bandeen-Roche, K.; Marx, J.J.; Neubauer, D.N.; Smith, P.L.; Schwartz, A.R. The association between daytime sleepiness and sleep-disordered breathing in NREM and REM sleep. Sleep 2002, 25, 307–314. [Google Scholar]
- Nykamp, K.; Rosenthal, L.; Folkerts, M.; Roehrs, T.; Guido, P.; Roth, T. The effects of REM sleep deprivation on the level of sleepiness/alertness. Sleep 1998, 21, 609–614. [Google Scholar] [CrossRef]
- Oksenberg, A.; Silverberg, D.S. The effect of body posture on sleep-related breathing disorders: Facts and therapeutic implications. Sleep Med. Rev. 1998, 2, 139–162. [Google Scholar] [CrossRef]
- Richard, W.; Kox, D.; den Herder, C.; Laman, M.; van Tinteren, H.; de Vries, N. The role of sleep position in obstructive sleep apnea syndrome. Eur. Arch. Oto-Rhino-Laryngol. Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. Affil. Ger. Soc. Oto-Rhino-Laryngol.-Head Neck Surg. 2006, 263, 946–950. [Google Scholar] [CrossRef]
Total (n = 692) | REM-OSA (n = 140) | nREM-OSA (n = 552) | p Value | |
---|---|---|---|---|
Patients, % | 100 | 20.2 | 79.8 | |
Female (%) | 195 (28.2) | 75 (53.6) | 120 (21.7) | <0.001 |
Age, year | 50.3 ± 13.4 | 48.7 ± 12.9 | 50.7 ± 13.4 | NS |
BMI, kg/m2 | 25.6 ± 3.8 | 25.4 ± 4.1 | 25.6 ± 3.8 | NS |
Heart disease (%) | 98 (14.2) | 15 (10.7) | 83 (15.0) | NS |
Hypertension (%) | 227 (32.8) | 29 (20.7) | 198 (35.9) | 0.001 |
Diabetes (%) | 92 (13.3) | 11 (7.1) | 82 (14.9) | 0.016 |
Hyperlipidemia (%) | 104 (15.0) | 17 (12.1) | 87 (15.8) | NS |
OSA severity | <0.001 | |||
5 ≤ AHI < 15 | 201 (29.0) | 97 (69.3) | 104 (18.8) | |
15 ≤ AHI < 30 | 196 (28.3) | 42 (30.0) | 154 (27.9) | |
AHI ≥ 30 | 295 (42.6) | 1 (0.7) | 294 (53.2) | |
K-ESS | 8.8 ± 4.7 | 8.7 ± 4.8 | 8.9 ± 4.7 | NS |
K-PSQI | 8.1 ± 4.0 | 8.4 ± 3.9 | 8.0 ± 4.0 | NS |
K-ISI | 12.1 ± 6.6 | 12.3 ± 6.9 | 12.0 ± 6.5 | NS |
K-BDI2 | 13.2 ± 9.4 | 14.7 ± 9.5 | 12.9 ± 9.3 | NS |
Total (n = 692) | REM-OSA (n = 140) | nREM-OSA (n = 552) | p Value | |
---|---|---|---|---|
TST, min | 35.1.3 ± 55.6 | 363.8 ± 49.0 | 348.1 ± 56.8 | NS |
Sleep latency, min | 11.9 ± 21.0 | 14.7 ± 21.7 | 11.3 ± 20.7 | NS |
REM latency, min | 108.6 ± 60.8 | 100.1 ± 62.0 | 110.8 ± 60.3 | 0.031 |
Sleep efficiency, % | 82.6 ± 11.7 | 85.1 ± 10.5 | 82.0 ± 12.0 | NS |
WASO | 62.5 ± 45.5 | 50.9 ± 39.7 | 65.5 ± 46.4 | <0.001 |
N1, % | 25.9 ± 13.3 | 16.4 ± 7.8 | 28.3 ± 13.2 | <0.001 |
N2, % | 52.5 ± 12.5 | 60.3 ± 9.3 | 50.5 ± 12.5 | NS |
N3, % | 3.0 ± 6.8 | 3.7 ± 7.2 | 2.9 ± 6.7 | NS |
REM, % | 18.6 ± 5.9 | 19.6 ± 5.9 | 18.2 ± 5.8 | NS |
Supine position, % | 62.2 ± 27.7 | 68.0 ± 25.4 | 60.7 ± 28.1 | NS |
Total arousal index | 38.4 ± 19.3 | 25.0 ± 10.8 | 41.8 ± 19.5 | <0.001 |
AHI | 31.6 ± 22.5 | 12.4 ± 5.5 | 36.5 ± 22.6 | <0.001 |
HI | 22.9 ± 15.4 | 11.0 ± 5.0 | 26.0 ± 15.7 | <0.001 |
AI | 8.7 ± 15.0 | 1.4 ± 2.2 | 10.6 ± 16.2 | <0.001 |
REM AHI | 34.2 ± 23.9 | 31.5 ± 15.9 | 35.9 ± 25.5 | NS |
NREM AHI | 30.9 ± 24.2 | 7.6 ± 3.8 | 36.8 ± 23.7 | <0.001 |
Supine AHI | 43.2 ± 28.8 | 16.6 ±10.7 | 49.9 ±28.1 | <0.001 |
Off-supine AHI | 15.4 ± 21.3 | 5.3 ± 9.0 | 18.0 ± 22.6 | <0.001 |
Mean SaO2, % | 94.8 ± 2.6 | 95.5 ± 2.9 | 94.6 ± 2.5 | NS |
PLM index | 4.9 ± 12.6 | 5.6 ± 14.2 | 4.7 ± 12.2 | NS |
Mild (n = 201) | Moderate (n = 196) | |||||
---|---|---|---|---|---|---|
Variables | REM-OSA (n = 97) | nREM-OSA (n = 104) | p Value | REM-OSA (n = 42) | nREM-OSA (n = 154) | p Value |
Female (%) | 57 (58.8) | 33 (31.7) | <0.001 | 17 (40.5) | 41 (26.6) | NS |
Age, year | 48.7 ± 12.7 | 48.7 ± 14.7 | NS | 48.5 ± 13.5 | 50.7 ± 12.8 | NS |
BMI, kg/m2 | 25.2 ± 4.0 | 24.2 ± 2.8 | NS | 26.1 ± 4.6 | 24.9 ± 3.4 | NS |
Heart disease (%) | 11 (11.3) | 13 (12.5) | NS | 4 (9.5) | 21 (13.6) | NS |
Hypertension (%) | 18 (18.6) | 24 (23.1) | NS | 10 (23.8) | 54 (35.1) | NS |
Diabetes (%) | 7 (7.2) | 11 (10.6) | NS | 2 (4.8) | 23 (15.0) | NS |
Hyperlipidemia (%) | 11 (11.3) | 13 (12.5) | NS | 6 (14.3) | 22 (14.3) | NS |
K-ESS | 8.4 ± 5.1 | 8.2 ± 4.7 | NS | 9.2 ± 3.7 | 8.6 ± 4.8 | NS |
K-PSQI | 8.4 ± 3.9 | 8.2 ± 4.0 | NS | 8.4 ± 3.7 | 8.1 ± 4.0 | NS |
K-ISI | 12.5 ± 6.9 | 12.1 ± 6.4 | NS | 11.8 ± 7.0 | 12.0 ± 6.8 | NS |
K-BDI2 | 14.4 ± 9.0 | 14.0 ± 9.9 | NS | 15.2 ± 10.6 | 13.6 ± 9.2 | NS |
Polysomnography data | ||||||
TST, m | 365.4 ±52.5 | 355.6 ± 57.5 | NS | 360.5 ± 41.1 | 354.6 ± 59.1 | NS |
Sleep latency, min | 14.7 ± 21.0 | 12.2 ± 22.9 | NS | 14.5 ± 23.7 | 10.2 ± 12.2 | NS |
REM latency, min | 106.8 ± 64.5 | 104.8 ± 57.6 | NS | 85.4 ± 54.2 | 108.7 ± 56.6 | NS |
Sleep efficiency | 84.9 ± 10.9 | 81.8 ± 12.3 | NS | 85.9 ± 9.4 | 83.0 ± 11.5 | NS |
WASO | 51.3 ± 41.3 | 68.3 ± 50.2 | 0.049 | 48.7 ± 35.7 | 62.0 ± 47.2 | 0.046 |
N1, % | 16.0 ± 7.5 | 18.9 ± 8.1 | 0.042 | 17.4 ± 8.2 | 23.7 ± 10.7 | <0.001 |
N2, % | 60.6 ± 9.3 | 54.5 ± 11.9 | NS | 59.8 ± 9.2 | 54.0 ± 12.3 | NS |
N3, % | 4.3 ± 7.6 | 6.5 ± 9.0 | 0.032 | 2.5 ± 6.3 | 3.5 ± 8.0 | NS |
REM, % | 19.1 ± 5.8 | 20.1 ± 6.1 | NS | 20.2 ± 5.8 | 18.8 ± 5.8 | NS |
Supine position (%) | 66.0 ± 25.5 | 53.6 ± 26.7 | NS | 74.3 ± 22.7 | 57.7 ± 29.3 | NS |
Arousal index | 23.5 ± 10.7 | 24.4 ± 13.2 | NS | 28.1 ± 10.6 | 33.1 ± 12.5 | 0.009 |
AHI | 9.4 ± 2.9 | 9.9 ± 3.0 | NS | 18.9 ± 3.2 | 22.5 ± 4.3 | <0.001 |
HI | 8.6 ± 2.8 | 9.0 ± 2.9 | NS | 16.3 ± 3.7 | 19.8 ± 5.2 | <0.001 |
AI | 0.9 ± 1.2 | 0.9 ± 1.2 | NS | 2.6 ± 3.3 | 2.8 ± 4.0 | NS |
REM AHI | 24.7 ± 10.9 | 7.4 ± 5.5 | NS | 46.3 ± 14.4 | 27.0 ± 17.6 | NS |
NREM AHI | 5.9 ± 2.7 | 10.5 ± 3.4 | <0.001 | 11.4 ± 3.0 | 21.7 ± 5.0 | <0.001 |
Supine AHI | 13.5 ± 8.7 | 21.6 ± 21.9 | <0.001 | 24.2 ± 20.6 | 36.0 ± 16.5 | <0.001 |
Off-supine AHI | 3.7 ± 4.7 | 3.7 ± 2.9 | NS | 8.5 ± 13.6 | 8.8 ± 8..2 | NS |
Mean SaO2, % | 95.5 ± 3.3 | 95.8 ± 1.7 | NS | 95.4 ± 1.4 | 95.3 ± 1.5 | NS |
PLM index | 6.1 ± 15.6 | 6.6 ± 14.0 | NS | 4.5 ± 10.7 | 5.0 ± 13.0 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.C.; Kim, D.-E.; Hwangbo, Y.; Song, M.L.; Yang, K.I.; Cho, Y.W. Does REM Sleep-Dependent Obstructive Sleep Apnea Have Clinical Significance? Int. J. Environ. Res. Public Health 2022, 19, 14147. https://doi.org/10.3390/ijerph192114147
Lee SC, Kim D-E, Hwangbo Y, Song ML, Yang KI, Cho YW. Does REM Sleep-Dependent Obstructive Sleep Apnea Have Clinical Significance? International Journal of Environmental Research and Public Health. 2022; 19(21):14147. https://doi.org/10.3390/ijerph192114147
Chicago/Turabian StyleLee, Seung Cheol, Doh-Eui Kim, Young Hwangbo, Mei Ling Song, Kwang Ik Yang, and Yong Won Cho. 2022. "Does REM Sleep-Dependent Obstructive Sleep Apnea Have Clinical Significance?" International Journal of Environmental Research and Public Health 19, no. 21: 14147. https://doi.org/10.3390/ijerph192114147
APA StyleLee, S. C., Kim, D.-E., Hwangbo, Y., Song, M. L., Yang, K. I., & Cho, Y. W. (2022). Does REM Sleep-Dependent Obstructive Sleep Apnea Have Clinical Significance? International Journal of Environmental Research and Public Health, 19(21), 14147. https://doi.org/10.3390/ijerph192114147