Aging and Possible Benefits or Negatives of Lifelong Endurance Running: How Master Male Athletes Differ from Young Athletes and Elderly Sedentary? †
Abstract
:1. Introduction
- To examine the (a) cardiorespiratory fitness, (b) skeletal muscle structural and functional, (c) inflammatory, (d) bone health, and (e) nutritional intake parameters.
- To determine the effects of aging and the physical activity level on the measured parameters.
- To describe the relationship between the ageing and physical activity level with monitored parameters.
- To identify the health benefits, and possible negative effects, of lifelong one-sided endurance training.
2. Materials and Methods
2.1. Study Design
2.2. Data Collection Scheme
2.3. Sample Size
2.4. Subjects
- (a)
- for athletes’ groups:
- defined as more than 300 min per week of running activity which is, by ACSM [8], considered as vigorous intensity of endurance activity.
- Both groups must regularly participate in running competitions (in 10 km, half, and full marathon) for young athletes for at least 3 years and for master athletes for at least 25 years.
- Have a personal best on 10 km run in last season under 35 min in YA group and under 55 min in MA.
- (b)
- for groups less active than recommended: no history of regular physical activity training and no more practice than 150 min of moderate or 75 min of vigorous intensity per week.
2.5. Ethics
2.6. Study Procedures
Familiarization
3. The Primary Outcome
Cardiorespiratory Fitness
4. Secondary Outcome Measure
4.1. Questionnaires
4.2. Body Composition and Bone Status
4.3. Muscular Strength
4.4. The Physical Activity Monitoring Period
4.5. Dietary Tracking
4.6. Blood Collection and Analyses
4.7. Muscle Sampling and Analyses
4.8. Data Analysis and Management
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garatachea, N.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Santos-Lozano, A.; Fiuza-Luces, C.; Moran, M.; Emanuele, E.; Joyner, M.J.; Lucia, A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015, 18, 57–89. [Google Scholar] [CrossRef] [Green Version]
- Nasabian, J.P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar]
- Pollock, R.D.; Carter, S.; Velloso, C.P.; Duggal, N.A.; Lord, J.M.; Lazarus, N.R.; Harridge, S.D.R. An investigation into the relationship between age and physiological function in highly active older adults. J. Physiol. 2015, 593, 657–680, discussion 680. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; Sui, X.; Hébert, J.R.; Church, T.S.; Blair, S.N. Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch. Intern. Med. 2009, 169, 1781–1787. [Google Scholar] [CrossRef] [Green Version]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Hunter, S.K. Are masters athletic performances predictive of human aging in men and women? Mov. Sport Sci. 2019, 104, 5–12. [Google Scholar] [CrossRef]
- Peralta, M.; Santos, D.A.; Henriques-Neto, D.; Ferrari, G.; Sarmento, H.; Marques, A. Promoting Health-Related Cardiorespiratory Fitness in Physical Education: The Role of Class Intensity and Habitual Physical Activity. Int. J. Environ. Res. Public Health 2020, 17, 6852. [Google Scholar] [CrossRef]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. American College of Sports Medicine. In ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2016. [Google Scholar]
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef]
- Ganse, B.; Ganse, U.; Dahl, J.; Degens, H. Linear Decrease in Athletic Performance During the Human Life Span. Front. Physiol. 2018, 9, 1100. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, P.L.; Maffiuletti, N.A.; Joyner, M.J.; Lucia, A.; Lepers, R. Lifelong Endurance Exercise as a Countermeasure Against Age-Related [Formula: See text] Decline: Physiological Overview and Insights from Masters Athletes. Sports Med. 2020, 50, 703–716. [Google Scholar] [CrossRef]
- Fleg, J.L.; Morrell, C.H.; Bos, A.G.; Brant, L.J.; Talbot, L.A.; Wright, J.G.; Lakatta, E.G. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 2005, 112, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Katzel, L.I.; Sorkin, J.D.; Fleg, J.L. A comparison of longitudinal changes in aerobic fitness in older endurance athletes and sedentary men. J. Am. Geriatr. Soc. 2001, 49, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Lepers, R.; Stapley, P.J. Master Athletes Are Extending the Limits of Human Endurance. Front. Physiol. 2016, 7, 613. [Google Scholar] [CrossRef] [Green Version]
- McCormick, R.; Vasilaki, A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology 2018, 19, 519–536. [Google Scholar] [CrossRef] [Green Version]
- McKendry, J.; Breen, L.; Shad, B.J.; Greig, C.A. Muscle morphology and performance in master athletes: A systematic review and meta-analyses. Ageing Res. Rev. 2018, 45, 62–82. [Google Scholar] [CrossRef]
- Jones, E.J.; Piasecki, J.; Ireland, A.; Stashuk, D.W.; Atherton, P.J.; Phillips, B.E.; McPhee, J.S.; Piasecki, M. Lifelong exercise is associated with more homogeneous motor unit potential features across deep and superficial areas of vastus lateralis. Geroscience 2021, 43, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Mosole, S.; Carraro, U.; Kern, H.; Loefler, S.; Fruhmann, H.; Vogelauer, M.; Burggraf, S.; Mayr, W.; Krenn, M.; Paternostro-Sluga, T.; et al. Long-term high-level exercise promotes muscle reinnervation with age. J. Neuropathol. Exp. Neurol. 2014, 73, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Piasecki, J.; Ireland, A.; Piasecki, M.; Deere, K.; Hannam, K.; Tobias, J.; McPhee, J.S. Comparison of Muscle Function, Bone Mineral Density and Body Composition of Early Starting and Later Starting Older Masters Athletes. Front. Physiol. 2019, 10, 1050. [Google Scholar] [CrossRef]
- Mackey, A.L.; Karlsen, A.; Couppé, C.; Mikkelsen, U.R.; Nielsen, R.H.; Magnusson, S.P.; Kjaer, M. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men. Acta Physiol. 2014, 210, 612–627. [Google Scholar] [CrossRef]
- Aguiar, S.S.; Sousa, C.V.; Deus, L.A.; Rosa, T.S.; Sales, M.M.; Neves, R.V.P.; Barbosa, L.P.; Santos, P.A.; Campbell, C.S.; Simões, H.G. Oxidative stress, inflammatory cytokines and body composition of master athletes: The interplay. Exp. Gerontol. 2020, 130, 110806. [Google Scholar] [CrossRef]
- Rosa, T.S.; Neves, R.V.P.; Deus, L.A.; Sousa, C.V.; da Silva Aguiar, S.; de Souza, M.K.; Moraes, M.R.; Rosa, C.C.C.; Andrade, R.V.; Korhonen, M.T.; et al. Sprint and endurance training in relation to redox balance, inflammatory status and biomarkers of aging in master athletes. Nitric Oxide 2020, 102, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.L.; Raja, R.; Golder, J.; Stewart, A.J.; Shaikh, R.F.; Apostolides, M.; Savva, J.; Sequeira, J.L.; Silvers, M.A. Implementation of nutrition risk screening using the Malnutrition Universal Screening Tool across a large metropolitan health service. J. Hum. Nutr. Diet. 2016, 29, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Desbrow, B.; Burd, N.A.; Tarnopolsky, M.; Moore, D.R.; Elliott-Sale, K.J. Nutrition for Special Populations: Young, Female, and Masters Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.; Buchanan, N.; Walsh, D.; Kraemer, M.; McAuley, P.; Hamilton-Wessler, M.; Froelicher, V.F. Comparison of the ramp versus standard exercise protocols. J. Am. Coll. Cardiol. 1991, 17, 1334–1342. [Google Scholar] [CrossRef] [Green Version]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjödin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J.Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef]
- Heinemann, L.A. Aging Males’ Symptoms scale: A standardized instrument for the practice. J. Endocrinol. Investig. 2005, 28, 34–38. [Google Scholar]
- Kralik, M.; Cvecka, J.; Buzgo, G.; Putala, M.; Ukropcova, B.; Ukropec, J.; Killinger, Z.; Payer, J.; Kollarik, B.; Bujdak, P.; et al. Strength training as a supplemental therapy for androgen deficiency of the aging male (ADAM): Study protocol for a three-arm clinical trial. BMJ Open 2019, 9, e025991. [Google Scholar] [CrossRef] [Green Version]
- Šarabon, N.; Čeh, T.; Kozinc, Ž.; Smajla, D. Adapted protocol of rate of force development and relaxation scaling factor for neuromuscular assessment in patients with knee osteoarthritis. Knee 2020, 27, 1697–1707. [Google Scholar] [CrossRef] [PubMed]
- Bily, W.; Franz, C.; Trimmel, L.; Loefler, S.; Cvecka, J.; Zampieri, S.; Kasche, W.; Sarabon, N.; Zenz, P.; Kern, H. Effects of Leg-Press Training With Moderate Vibration on Muscle Strength, Pain, and Function After Total Knee Arthroplasty: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2016, 97, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Sarabon, N.; Löfler, S.; Cvecka, J.; Sedliak, M.; Kern, H. Strength training in elderly people improves static balance: A randomized controlled trial. Eur. J. Transl. Myol. 2013, 23, 85–89. [Google Scholar]
- Sarabon, N.; Rosker, J.; Fruhmann, H.; Burggraf, S.; Löfler, S.; Kern, H. Reliability of Maximal Voluntary Contraction Related Parameters Measured by a Novel Portable Isometric Knee Dynamometer. Phys. Med. Rehabil. Kurortmed. 2013, 23, 22–27. [Google Scholar] [CrossRef]
- Mani, P. Test-retest reliability of electronic hand dynamometer in healthy adults. Int. J. Adv. Res. 2019, 7, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Lyden, K.; Keadle, S.K.; Staudenmayer, J.; Freedson, P.S. The activPALTM Accurately Classifies Activity Intensity Categories in Healthy Adults. Med. Sci. Sports Exerc. 2017, 49, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Kastelic, K.; Šarabon, N. Comparison of Self-Reported Sedentary Time on Weekdays with an Objective Measure (activPAL). Meas. Phys. Educ. Exerc. Sci. 2019, 23, 227–236. [Google Scholar] [CrossRef]
- Bajer, B.; Radikova, Z.; Havranová, A.; Zitnanová, I.; Vlček, M.; Imrich, R.; Sabaka, P.; Bendžala, M.; Penesová, A. Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions. Obes. Res. Clin. Pract. 2019, 13, 586–593. [Google Scholar] [CrossRef]
- Pietrangelo, T.; Di Filippo, E.S.; Mancinelli, R.; Doria, C.; Rotini, A.; Fanò-Illic, G.; Fulle, S. Low Intensity Exercise Training Improves Skeletal Muscle Regeneration Potential. Front. Physiol. 2015, 6, 399. [Google Scholar] [CrossRef] [Green Version]
- Pietrangelo, L.; Michelucci, A.; Ambrogini, P.; Sartini, S.; Guarnier, F.A.; Fusella, A.; Zamparo, I.; Mammucari, C.; Protasi, F.; Boncompagni, S. Muscle activity prevents the uncoupling of mitochondria from Ca (2+) Release Units induced by ageing and disuse. Arch. Biochem. Biophys. 2019, 663, 22–33. [Google Scholar] [CrossRef]
- Hopkins, W.G. Magnitude-Based Decisions as Hypothesis Tests. Sportscience 2020, 24, 1–16. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between oxidant and antioxidant systems: Short-and long-term implications for athletes’ health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vajda, M.; Oreská, Ľ.; Černáčková, A.; Čupka, M.; Tirpáková, V.; Cvečka, J.; Hamar, D.; Protasi, F.; Šarabon, N.; Zampieri, S.; et al. Aging and Possible Benefits or Negatives of Lifelong Endurance Running: How Master Male Athletes Differ from Young Athletes and Elderly Sedentary? Int. J. Environ. Res. Public Health 2022, 19, 13184. https://doi.org/10.3390/ijerph192013184
Vajda M, Oreská Ľ, Černáčková A, Čupka M, Tirpáková V, Cvečka J, Hamar D, Protasi F, Šarabon N, Zampieri S, et al. Aging and Possible Benefits or Negatives of Lifelong Endurance Running: How Master Male Athletes Differ from Young Athletes and Elderly Sedentary? International Journal of Environmental Research and Public Health. 2022; 19(20):13184. https://doi.org/10.3390/ijerph192013184
Chicago/Turabian StyleVajda, Matej, Ľudmila Oreská, Alena Černáčková, Martin Čupka, Veronika Tirpáková, Ján Cvečka, Dušan Hamar, Feliciano Protasi, Nejc Šarabon, Sandra Zampieri, and et al. 2022. "Aging and Possible Benefits or Negatives of Lifelong Endurance Running: How Master Male Athletes Differ from Young Athletes and Elderly Sedentary?" International Journal of Environmental Research and Public Health 19, no. 20: 13184. https://doi.org/10.3390/ijerph192013184