Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Dietary Intervention
2.3. Anthropometric Data
2.4. Blood Sample Collection and Clinical Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of Bitter Apricot Seeds Consumption on Anthropometric Characteristics
3.2. Effect of Bitter Apricot Seeds Consumption on Traditional Blood Serum Lipid Profile and Fasting Glucose
3.3. Effect of Bitter Apricot Seeds Consumption on Lipoprotein Subfractions
3.4. Effect of Bitter Apricot Seeds Consumption on High-Sensitivity CRP, CK, and Liver Enzymes
3.5. Comparison of Monitored Parameters after Nutrition Intervention Adjusted for Body Mass Index (BMI) and Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandhorst, S.; Longo, V.D. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ. Res. 2019, 124, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M. The Pathogenesis of Atherosclerosis. Medicine 2018, 46, 505–508. [Google Scholar] [CrossRef]
- Kaplan, H.; Thompson, R.C.; Trumble, B.C.; Wann, L.S.; Allam, A.H.; Beheim, B.; Frohlich, B.; Sutherland, M.L.; Sutherland, J.D.; Stieglitz, J.; et al. Coronary Atherosclerosis in Indigenous South American Tsimane: A Cross-Sectional Cohort Study. Lancet 2017, 389, 1730–1739. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; Topper, J.N.; Nagel, T.; Anderson, K.R.; Garcia-Cardeña, G. Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesis. Ann. N. Y. Acad. Sci. 2000, 902, 230–239; discussion 239–240. [Google Scholar] [CrossRef]
- Kuk, M.; Ward, N.C.; Dwivedi, G. Extrinsic and Intrinsic Responses in the Development and Progression of Atherosclerosis. Heart Lung Circ. 2021, 30, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Shantsila, E.; Varma, C.; Lip, G.Y. Current Understanding of Atherogenesis. Am. J. Med. 2017, 130, 268–282. [Google Scholar] [CrossRef]
- Wang, T.; Butany, J. Pathogenesis of Atherosclerosis. Diagn. Histopathol. 2017, 23, 473–478. [Google Scholar] [CrossRef]
- Tabas, I.; Lichtman, A.H. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 2017, 47, 621–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, J.G.; O’Dea, K.; Walker, K.Z. Evidence for Low High-Density Lipoprotein Cholesterol Levels in Australian Indigenous Peoples: A Systematic Review. BMC Public Health 2014, 14, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharjee, S.; Boden, W.E.; Hartigan, P.M.; Teo, K.K.; Maron, D.J.; Sedlis, S.P.; Kostuk, W.; Spertus, J.A.; Dada, M.; Chaitman, B.R.; et al. Low Levels of High-Density Lipoprotein Cholesterol and Increased Risk of Cardiovascular Events in Stable Ischemic Heart Disease Patients: A Post-Hoc Analysis from the COURAGE Trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation). J. Am. Coll. Cardiol. 2013, 62, 1826–1833. [Google Scholar] [PubMed] [Green Version]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barter, P.; Gotto, A.M.; LaRosa, J.C.; Maroni, J.; Szarek, M.; Grundy, S.M.; Kastelein, J.J.P.; Bittner, V.; Fruchart, J.-C.; Treating to New Targets Investigators. HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. N. Engl. J. Med. 2007, 357, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, T.A.; Maki, K.C.; Orringer, C.E.; Jones, P.H.; Kris-Etherton, P.; Sikand, G.; La Forge, R.; Daniels, S.R.; Wilson, D.P.; Morris, P.B.; et al. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J. Clin. Lipidol. 2015, 9 (Suppl. 6), S1–S122.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boekholdt, S.M.; Arsenault, B.J.; Mora, S.; Pedersen, T.R.; LaRosa, J.C.; Nestel, P.J.; Simes, R.J.; Durrington, P.; Hitman, G.A.; Welch, K.M.A.; et al. Association of LDL Cholesterol, Non-HDL Cholesterol, and Apolipoprotein B Levels with Risk of Cardiovascular Events among Patients Treated with Statins: A Meta-Analysis. JAMA 2012, 307, 1302–1309. [Google Scholar] [CrossRef]
- Austin, M.A.; King, M.C.; Vranizan, K.M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990, 82, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Van, J.; Pan, J.; Charles, M.A.; Krauss, R.; Wong, N.; Wu, X. Atherogenic Lipid Phenotype in a General Group of Subjects. Arch. Pathol. Lab. Med. 2007, 131, 1679–1685. [Google Scholar] [CrossRef]
- Superko, H.R.; Pendyala, L.; Williams, P.T.; Momary, K.M.; King, S.B.; Garrett, B.C. High-Density Lipoprotein Subclasses and Their Relationship to Cardiovascular Disease. J. Clin. Lipidol. 2012, 6, 496–523. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Vandermeersch, A.; Ameye, S.; Puype, D.; Petitjean, D.; De Buyzere, M.; Langlois, M.R. Estimation of the Low-Density Lipoprotein (LDL) Subclass Phenotype Using a Direct, Automated Assay of Small Dense LDL-Cholesterol without Sample Pretreatment. Clin. Chim. Acta 2010, 411, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1273042. [Google Scholar] [CrossRef] [PubMed]
- Oravec, S.; Dostal, E.; Dukát, A.; Gavorník, P.; Kucera, M.; Gruber, K. HDL Subfractions Analysis: A New Laboratory Diagnostic Assay for Patients with Cardiovascular Diseases and Dyslipoproteinemia. Neuro Endocrinol. Lett. 2011, 32, 502–509. [Google Scholar] [PubMed]
- Kwon, S.W.; Yoon, S.-J.; Kang, T.S.; Kwon, H.M.; Kim, J.-H.; Rhee, J.; Lee, S.-J.; Park, J.-K.; Lim, J.Y.; Yoon, Y.W.; et al. Significance of Small Dense Low-Density Lipoprotein as a Risk Factor for Coronary Artery Disease and Acute Coronary Syndrome. Yonsei Med. J. 2006, 47, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.A.; Breslow, J.L.; Hennekens, C.H.; Buring, J.E.; Willett, W.C.; Krauss, R.M. Low-Density Lipoprotein Subclass Patterns and Risk of Myocardial Infarction. JAMA 1988, 260, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.S.; Pavitt, D.V.; Tan, T.; Venkatesan, S.; Godsland, I.F.; Richmond, W.; Johnston, D.G. Lipoprotein Separation in a Novel Iodixanol Density Gradient, for Composition, Density, and Phenotype Analysis. J. Lipid. Res. 2008, 49, 1364–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, D.R.; Taskinen, M.R.; Perttunen-Nio, H.; Van Tol, A.; Livingstone, S.; Colhoun, H.M. Study of Agreement between LDL Size as Measured by Nuclear Magnetic Resonance and Gradient Gel Electrophoresis. J. Lipid. Res. 2004, 45, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Santiago, M.; Priego-Capote, F.; Galache-Osuna, J.G.; de Castro, M.L. Method based on GC–MS to study the influence of tricarboxylic acid cycle metabolites on cardiovascular risk factors. J. Pharm. Biomed. Anal. 2012, 74, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kanter, M.M.; Kris-Etherton, P.M.; Fernandez, M.L.; Vickers, K.C.; Katz, D.L. Exploring the factors that affect blood cholesterol and heart disease risk: Is dietary cholesterol as bad for you as history leads us to believe? Adv. Nutr. 2012, 3, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, A.; Vinciguerra, M. The Effects of Meal Timing and Frequency, Caloric Restriction, and Fasting on Cardiovascular Health: An Overview. J. Lipid Atheroscler. 2020, 9, 140–152. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid-Moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant Capacity of Brazilian Fruit, Vegetables and Commercially-Frozen Fruit Pulps. J. Food Compos. Anal. 2009, 22, 394–396. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Prakash, D.; Gupta, K.R. The Antioxidant Phytochemicals of Nutraceutical Importance. Open Nutraceuticals J. 2009, 2, 20–35. [Google Scholar] [CrossRef]
- Marcus, J.B. Chapter 2-Nutritional and Physical Concerns in Aging; Jacqueline, B., Ed.; Marcus, Aging, Nutrition and Taste; Academic Press: Cambridge, MA, USA, 2019; pp. 25–63. ISBN 9780128135273. [Google Scholar]
- Lee, H.-H.; Ahn, J.-H.; Kwon, A.-R.; Lee, E.S.; Kwak, J.-H.; Min, Y.-H. Chemical Composition and Antimicrobial Activity of the Essential Oil of Apricot Seed. Phytother. Res. 2014, 28, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alonso, P.; Salas-Salvado, J.; Baldrich-Mora, M.; Mallol, R.; Correig, X.; Bullo, M. Effect of pistachio consumption on plasma lipoprotein subclasses in pre-diabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 396–402. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Gomez, E.; Burgos, L.; Soriano, C.; Marin, J. Amygdalin content in the seeds of several apricot cultivars. J. Sci. Food Agric. 1993, 77, 184–186. [Google Scholar] [CrossRef]
- Chang, H.K.; Yang, H.Y.; Lee, T.H.; Shin, M.C.; Lee, M.H.; Shin, M.S.; Kim, C.J.; Kim, O.J.; Hong, S.P.; Cho, S. Armeniacae Semen Extract Suppresses Lipopolysaccharide-Induced Expressions of Cyclooxygenase [Correction of Cycloosygenase]-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells. Biol. Pharm. Bull. 2005, 28, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badr, J.M.; Tawfik, M.K. Analytical and pharmacological investigation of amygdalin in Prunus armeniaca L. kernels. J. Pharm. Res. 2010, 3, 2134–2137. [Google Scholar]
- Lv, L.; Yao, Y.; Zhao, G.; Zhu, G. Rutin Inhibits Coronary Heart Disease through ERK1/2 and Akt Signaling in a Porcine Model. Exp. Ther. Med. 2018, 15, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Chhajed, M.; Arora, S.; Thakur, G.; Gupta, R. Medicinal Value of Apricot: A Review. Indian J. Pharm. Sci. 2018, 80, 790–794. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J.; Wang, F.; Hu, J.; Cui, A.; Wei, C.; Yang, Q.; Li, F. Amygdalin Induces Apoptosis in Human Cervical Cancer Cell Line HeLa Cells. Immunopharmacol. Immunotoxicol. 2013, 35, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. In Vitro Antioxidant, Antimicrobial, and Antitumor Activities of Bitter Almond and Sweet Apricot (Prunus Armeniaca L.) Kernels. Food Sci. Biotechnol. 2013, 22, 455–463. [Google Scholar] [CrossRef]
- Durmaz, G.; Alpaslan, M. Antioxidant Properties of Roasted Apricot (Prunus Armeniaca L.) Kernel. Food Chemistry 2007, 100, 1177–1181. [Google Scholar] [CrossRef]
- Ayaz, Z.; Zainab, B.; Khan, S.; Abbasi, A.M.; Elshikh, M.S.; Munir, A.; Al-Ghamdi, A.A.; Alajmi, A.H.; Alsubaie, Q.D.; Mustafa, A.E.-Z.M. In Silico Authentication of Amygdalin as a Potent Anticancer Compound in the Bitter Kernels of Family Rosaceae. Saudi J. Biol. Sci. 2020, 27, 2444–2451. [Google Scholar] [CrossRef]
- Aamazadeh, F.; Ostadrahimi, A.; Rahbar Saadat, Y.; Barar, J. Bitter Apricot Ethanolic Extract Induces Apoptosis through Increasing Expression of Bax/Bcl-2 Ratio and Caspase-3 in PANC-1 Pancreatic Cancer Cells. Mol. Biol. Rep. 2020, 47, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Cassiem, W.; de Kock, M. The Anti-Proliferative Effect of Apricot and Peach Kernel Extracts on Human Colon Cancer Cells in Vitro. BMC Complement Altern. Med. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.-S.; Wen, S.-H. Effect of Early Use of Chinese Herbal Products on Mortality Rate in Patients with Lung Cancer. J. Ethnopharmacol. 2018, 211, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kolesárová, A.; Pivko, J.; Halenár, M.; Zbyňovská, K.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Kopčeková, J.; Valuch, J.; Kolesárová, A. Effect of Apricot Seeds on Renal Structure of Rabbits. Potr. S. J. F. Sci. 2017, 11, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Tušimová, E.; Kováčik, A.; Halenár, M.; Michalcová, K.; Zbyňovská, K.; Kolesárová, A.; Kopčeková, J.; Valuch, J.; Kolesárová, A. Does Apricot Seeds Consumption Cause Changes in Human Urine? Potr. S. J. F. Sci. 2017, 11, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Ramzan, S.; Soelberg, J.; Jäger, A.K.; Cantarero-Arévalo, L. Traditional Medicine among People of Pakistani Descent in the Capital Region of Copenhagen. J. Ethnopharmacol. 2017, 196, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Yamshanov, V.A.; Kovan’ko, E.G.; Pustovalov, Y.I. Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice. Bull. Exp. Biol. Med. 2016, 160, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, S.-S.; Du, Q. Traditional Chinese Medicine for Prevention and Treatment of Hepatocarcinoma: From Bench to Bedside. World J. Hepatol. 2015, 7, 1209–1232. [Google Scholar] [CrossRef] [PubMed]
- Korekar, G.; Stobdan, T.; Arora, R.; Yadav, A.; Singh, S.B. Antioxidant Capacity and Phenolics Content of Apricot (Prunus Armeniaca L.) Kernel as a Function of Genotype. Plant Foods Hum. Nutr. 2011, 66, 376–383. [Google Scholar] [CrossRef]
- Kopčeková, J.; Kolesárová, A.; Kováčik, A.; Kováčiková, E.; Gažarová, M.; Chlebo, P.; Valuch, J.; Kolesárová, A. Influence of Long-Term Consumption of Bitter Apricot Seeds on Risk Factors for Cardiovascular Diseases. J. Environ. Sci. Health B 2018, 53, 298–303. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis: Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Skrzypczak, M.; Szwed, A.; Pawlińska-Chmara, R.; Skrzypulec, V. Assessment of the BMI, WHR and W/Ht in pre- and postmenopausal women. Anthropol. Rev. 2007, 70, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferre, M.; Li, J.; Hu, F.B.; Salas-Salvado, J.; Tobias, D.K. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: An updated meta-analysis and systematic review of controlled trials. Am. J. Clin. Nutr. 2018, 108, 174–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Eilat-Adar, S.; Goldbourt, U. Nutritional Recommendations for Preventing Coronary Heart Disease in Women: Evidence Concerning Whole Foods and Supplements. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, E.E.; Huff, M.W. Antiatherogenic Properties of Flavonoids: Implications for Cardiovascular Health. Can. J. Cardiol. 2010, 26 (Suppl. A), 17A–21A. [Google Scholar] [CrossRef]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldringe, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Diehr, P.; Beresford, S.A. The relation of dietary patterns to future survival, health, and cardiovascular events in older adults. J. Clin. Epidemiol. 2003, 56, 1224–1235. [Google Scholar] [CrossRef]
- Fung, T.T.; Willett, W.C.; Stampfer, M.J.; Manson, J.E.; Hu, F.B. Dietary patterns and the risk of coronary heart disease in women. Arch. Intern. Med. 2001, 161, 1857–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Spiegelman, D.; Willett, W.C. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clin. Nutr. 2000, 72, 912–921. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 4, 82–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Wang, B.; Wang, J.; Xia, S.; Wu, Y. Effect of Pyrogallic Acid (1,2,3-Benzenetriol) Polyphenol-Protein Covalent Conjugation Reaction Degree on Structure and Antioxidant Properties of Pumpkin (Cucurbita Sp.) Seed Protein Isolate. LWT 2019, 109, 443–449. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Meddeb, W.; Msaada, K.; Hamdi, S. Chemical Composition and Bioactive Compounds of Cucurbitaceae Seeds: Potential Sources for New Trends of Plant Oils. Process Saf. Environ. Prot. 2019, 127, 73–81. [Google Scholar] [CrossRef]
- Meru, G.; Fu, Y.; Leyva, D.; Sarnoski, P.; Yagiz, Y. Phenotypic Relationships among Oil, Protein, Fatty Acid Composition and Seed Size Traits in Cucurbita Pepo. Sci. Hortic. 2018, 233, 47–53. [Google Scholar] [CrossRef]
- Chari, K.Y.; Polu, P.R.; Shenoy, R.R. An Appraisal of Pumpkin Seed Extract in 1, 2-Dimethylhydrazine Induced Colon Cancer in Wistar Rats. J. Toxicol. 2018, 2018, 6086490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, C.W.; Josse, A.R.; Esfahani, A.; Jenkins, D.J. Nuts, metabolic syndrome and diabetes. Br. J. Nutr. 2010, 104, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, A.; Barzegar, M.; Mobarez, A.M.; Sahari, M.A.; Esfahani, Z.H. Antioxidant, Anti-Microbial and Antimutagenicity Activities of Pistachio (Pistachia Vera) Green Hull Extract. Food Chem. Toxicol. 2010, 48, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Hu, F.B. Consumption of plant seeds and cardiovascular health: Epidemiological and clinical trial evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Ostan, R.; Lanzarini, C.; Pini, E.; Scurti, M.; Vianello, D.; Bertarelli, C.; Fabbri, C.; Izzi, M.; Palmas, G.; Biondi, F.; et al. Inflammaging and Cancer: A Challenge for the Mediterranean Diet. Nutrients 2015, 7, 2589–2621. [Google Scholar] [CrossRef] [Green Version]
- Alpaslan, M.; Hayta, M. Apricot Kernel: Physical and Chemical Properties. J. Am. Oil Chem. Soc. 2006, 83, 469–471. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of Tree Nuts on Blood Lipids, Apolipoproteins, and Blood Pressure: Systematic Review, Meta-Analysis, and Dose-Response of 61 Controlled Intervention Trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.A.; Kendall, C.W.C.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose Response of Almonds on Coronary Heart Disease Risk Factors: Blood Lipids, Oxidized Low-Density Lipoproteins, Lipoprotein (a), Homocysteine, and Pulmonary Nitric Oxide: A Randomized, Controlled, Crossover Trial. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zibaeenezhad, M.; Shahamat, M.; Mosavat, S.H.; Attar, A.; Bahramali, E. Effect of Amygdalus Scoparia Kernel Oil Consumption on Lipid Profile of the Patients with Dyslipidemia: A Randomized, Openlabel Controlled Clinical Trial. Oncotarget 2017, 8, 79636–79641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Gu, H.-D.; Zhang, L.; Tian, Z.-J.; Zhang, Z.-Q.; Shi, X.-C.; Ma, W.-H. Protective Effects of Apricot Kernel Oil on Myocardium against Ischemia-Reperfusion Injury in Rats. Food Chem. Toxicol. 2011, 49, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.Y.; Zhang, Q.A.; Zhang, Z.Q.; Wang, Y.; Yuan, J.F.; Wang, H.Y.; Zhao, D. Hepatoprotective Effects of Almond Oil against Carbon Tetrachloride Induced Liver Injury in Rats. Food Chem. 2011, 125, 673–678. [Google Scholar] [CrossRef]
- Turan, S.; Topcu, A.; Karabulut, I.; Vural, H.; Hayaloglu, A.A. Fatty Acid, Triacylglycerol, Phytosterol, and Tocopherol Variations in Kernel Oil of Malatya Apricots from Turkey. J. Agric. Food Chem. 2007, 55, 10787–10794. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Ombra, M.N.; d’Acierno, A.; Cipriano, L.; Nazzaro, F. Apricots: Biochemistry and Functional Properties. Curr. Opin. Food Sci. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Kang, J.; Zhong, J.; Prenzler, P.D. The quality and volatile-profile changes of Longwangmo apricot (Prunus armeniaca L.) kernel oil prepared by different oil-producing processes. Eur. J. Lipid Sci. Technol. 2016, 118, 236–243. [Google Scholar] [CrossRef]
- Tanwar, B.; Modgil, R.; Goyal, A. Effect of Detoxification on Biological Quality of Wild Apricot (Prunus Armeniaca L.) Kernel. J. Sci. Food Agric. 2019, 99, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Drevon, C.A. Marine Oils and Their Effects. Nutr. Rev. 1992, 50 Pt 2, 38–45. [Google Scholar] [CrossRef]
- Sakarkar, D.N.; Deshmukh, V.N. Ethnopharmacological review of traditional medicinal plants for anticancer activity. Int. J. PharmTech Res. 2011, 3, 298–308. [Google Scholar]
- Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin Mediates Relieved Atherosclerosis in Apolipoprotein E Deficient Mice through the Induction of Regulatory T Cells. Biochem. Biophys. Res. Commun. 2011, 411, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Akbari, G. Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review. Avicenna J. Phytomed. 2020, 10, 11–23. [Google Scholar] [PubMed]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Shahrzad, S.; Aoyagi, K.; Winter, A.; Koyama, A.; Bitsch, I. Pharmacokinetics of Gallic Acid and Its Relative Bioavailability from Tea in Healthy Humans. J. Nutr. 2001, 131, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Ferk, F.; Kundi, M.; Brath, H.; Szekeres, T.; Al-Serori, H.; Mišík, M.; Saiko, P.; Marculescu, R.; Wagner, K.-H.; Knasmueller, S. Gallic Acid Improves Health-Associated Biochemical Parameters and Prevents Oxidative Damage of DNA in Type 2 Diabetes Patients: Results of a Placebo-Controlled Pilot Study. Mol. Nutr. Food. Res. 2018, 62, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chuffa, L.G.A.; Fioruci-Fontanelli, B.A.; Bordon, J.G.; Pires, R.B.; Braga, C.P.; Seiva, F.R.F.; Fernandes, A.A.H. Rutin Ameliorates Glycemic Index, Lipid Profile and Enzymatic Activities in Serum, Heart and Liver Tissues of Rats Fed with a Combination of Hypercaloric Diet and Chronic Ethanol Consumption. Indian J. Biochem. Biophys. 2014, 51, 215–222. [Google Scholar] [PubMed]
- Ziaee, A.; Zamansoltani, F.; Nassiri-Asl, M.; Asi, E.A. Effects of Rutin on Lipid Profile in Hypercholesterolaemic Rats. Basic Clin. Pharmacol. Toxicol. 2009, 104, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Askari, G.; Yazdekhasti, N.; Mohammadifard, N.; Sarrafzadegan, N.; Bahonar, A.; Badiei, M.; Sajjadi, F.; Taheri, M. The Relationship between Nut Consumption and Lipid Profile among the Iranian Adult Population; Isfahan Healthy Heart Program. Eur. J. Clin. Nutr. 2013, 67, 385–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bes-Rastrollo, M.; Wedick, N.M.; Martinez-Gonzalez, M.A.; Li, T.Y.; Sampson, L.; Hu, F.B. Prospective Study of Nut Consumption, Long-Term Weight Change, and Obesity Risk in Women. Am. J. Clin. Nutr. 2009, 89, 1913–1919. [Google Scholar] [CrossRef]
- Bes-Rastrollo, M.; Sabaté, J.; Gómez-Gracia, E.; Alonso, A.; Martínez, J.A.; Martínez-González, M.A. Nut Consumption and Weight Gain in a Mediterranean Cohort: The SUN Study. Obesity 2007, 15, 107–116. [Google Scholar] [CrossRef]
- Maruthappan, V.G.; Shree, K.S. Blood cholesterol lowering effect of adenanthera pavonina seed extract on atherogenic diet induced hyperlipidemia in rats. Int. J. Pharm. Sci. Res. 2010, 1, 87–94. [Google Scholar]
- Jahromi, M.A.; Ray, A.B. Antihyperlipidemic Effect of Flavonoids from Pterocarpus Marsupium. J. Nat. Prod. 1993, 56, 989–994. [Google Scholar] [CrossRef]
- Anum, E.A.; Adera, T. Hypercholesterolemia and coronary heart disease in the elderly: A meta analysis. Ann. Epidemiol. 2004, 14, 705–721. [Google Scholar] [CrossRef]
- Iversen, A.; Jensen, J.S.; Scharling, H.; Schnohr, P. Hypercholesterolaemia and risk of coronary heart disease in the elderly: Impact of age: The Copenhagen City Heart Study. Eur. J. Intern. Med. 2009, 20, 139–144. [Google Scholar] [CrossRef]
- Gränsbo, K.; Almgren, P.; Nilsson, P.M.; Hedblad, B.; Engström, G.; Melander, O. Risk factor exposure in individuals free from cardiovascular disease differs according to age at first myocardial infarction. Eur. Heart J. 2016, 37, 1977–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, F.J.; Waldeyer, C.; Ojeda, F.; Salomaa, V.; Kee, F.; Sans, S.; Thorand, B.; Giampaoli, S.; Brambilla, P.; Tunstall-Pedoe, H.; et al. Application of non HDL cholesterol for population based cardiovascular risk stratification: Results from the Multinational Cardiovascular Risk Consortium. Lancet 2019, 394, 2173–2183. [Google Scholar] [CrossRef] [Green Version]
- Kopčeková, J.; Kováčiková, E.; Kováčik, A.; Kolesárová, A.; Mrázová, J.; Chlebo, P.; Kolesárová, A. Consumption of Bitter Apricot Seeds Affects Lipid and Endocrine Profile in Women. J. Environ. Sci. Health B 2021, 56, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.C.; Boerwinkle, E.; Mosley, T.H.; Hobbs, H.H. Sequence Variations in PCSK9, Low LDL, and Protection against Coronary Heart Disease. N. Engl. J. Med. 2006, 354, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Goldstein, J.L. Biomedicine. Lowering LDL--Not Only How Low, but How Long? Science 2006, 311, 1721–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Merz, C.N.B.; Brewer, H.B.; Clark, L.T.; Hunninghake, D.B.; Pasternak, R.C.; Smith, S.C.; Stone, N.J.; Coordinating Committee of the National Cholesterol Education Program. Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation 2004, 110, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R.; Stresa Workshop Participants. Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef] [Green Version]
- Padro, T.; Muñoz-Garcia, N.; Badimon, L. The Role of Triglycerides in the Origin and Progression of Atherosclerosis. Clin. Investig. Arterioscler. 2021, 33 (Suppl. 2), 20–28. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Nordestgaard, B.G. Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 years: A contemporary primary prevention cohort. Lancet 2020, 21, 1644–1652. [Google Scholar] [CrossRef]
- Talebi, S.; Bagherniya, M.; Atkin, S.L.; Askari, G.; Orafai, H.M.; Sahebkar, A. The Beneficial Effects of Nutraceuticals and Natural Products on Small Dense LDL Levels, LDL Particle Number and LDL Particle Size: A Clinical Review. Lipids Health Dis. 2020, 19, 66. [Google Scholar] [CrossRef] [Green Version]
- Pascot, A.; Lemieux, I.; Prud’homme, D.; Tremblay, A.; Nadeau, A.; Couillard, C.; Bergeron, J.; Lamarche, B.; Després, J.P. Reduced HDL Particle Size as an Additional Feature of the Atherogenic Dyslipidemia of Abdominal Obesity. J. Lipid Res. 2001, 42, 2007–2014. [Google Scholar] [CrossRef]
- St-Pierre, A.C.; Cantin, B.; Dagenais, G.R.; Mauriège, P.; Bernard, P.M.; Després, J.P.; Lamarche, B. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 553–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarche, B.; Tchernof, A.; Moorjani, S.; Cantin, B.; Dagenais, G.R.; Lupien, P.J.; Després, J.P. Small, Dense Low-Density Lipoprotein Particles as a Predictor of the Risk of Ischemic Heart Disease in Men. Prospective Results from the Québec Cardiovascular Study. Circulation 1997, 95, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patti, A.M.; Al-Rasadi, K.; Giglio, R.V.; Nikolic, D.; Mannina, C.; Castellino, G.; Chianetta, R.; Banach, M.; Cicero, A.F.; Lippi, G. Natural approaches in metabolic syndrome management. Arch. Med. Sci. 2018, 14, 422–441. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G. Lipid-lowering nutraceuticals in clinical practice: Position paper from an international lipid expert panel. Nutr. Rev. 2017, 75, 731–767. [Google Scholar] [CrossRef]
- Sahebkar, A.; Serban, M.C.; Gluba-Brzozka, A.; Mikhailidis, D.P.; Cicero, A.F.; Rysz, J.; Banach, M. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition 2016, 32, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Scicchitano, P.; Cameli, M.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S.; Palmiero, P.; Saba, P.S.; Pedrinelli, R.; Ciccone, M.M. Nutraceuticals and dyslipidaemia: Beyond the common therapeutics. J. Funct. Foods 2014, 6, 11–32. [Google Scholar] [CrossRef]
- Mannarino, M.R.; Ministrini, S.; Pirro, M. Nutraceuticals for the treatment of hypercholesterolemia. Eur. J. Intern. Med. 2014, 25, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Holligan, S.D.; West, S.G.; Gebauer, S.K.; Kay, C.D.; Kris-Etherton, P.M. A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels. Br. J. Nutr. 2014, 112, 744–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yucesan, F.B.; Orem, A.; Kural, B.V.; Orem, C.; Turan, I. Hazelnut consumption decreases the susceptibility of LDL to oxidation, plasma oxidized LDL level and increases the ratio of large/small LDL in normolipidemic healthy subjects. Anadolu Kardiyol. Derg. 2010, 10, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Almario, R.U.; Vonghavaravat, V.; Wong, R.; Kasim-Karakas, S.E. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am. J. Clin. Nutr. 2001, 74, 72–79. [Google Scholar] [CrossRef]
- Zitnanova, I.; Oravec, S.; Janubova, M.; Konarikova, K.; Dvorakova, M.; Laubertova, L.; Kralova, M.; Simko, M.; Muchova, J. Gender differences in LDL and HDL subfractions in atherogenic and nonatherogenic phenotypes. Clin. Biochem. 2020, 79, 9–13. [Google Scholar] [CrossRef]
- Oravec, S.; Dukat, A.; Gavornik, P.; Kucera, M.; Gruber, K.; Gaspar, L.; Rizzo, M.; Toth, P.P.; Mikhailidis, D.P.; Banach, M. Atherogenic versus non-atherogenic lipoprotein profiles in healthy individuals. Is there a need to change our approach to diagnosing dyslipidemia? Curr. Med. Chem. 2014, 21, 2892–2901. [Google Scholar] [CrossRef] [PubMed]
- Rajman, I.; Kendall, M.J.; Cramb, R.; Holder, R.L.; Salih, M.; Gammage, M.D. Investigation of Low Density Lipoprotein Subfractions as a Coronary Risk Factor in Normotriglyceridaemic Men. Atherosclerosis 1996, 125, 231–242. [Google Scholar] [CrossRef]
- Eyidemir, M.; Hayta, M. The effect of apricot kernel flour incorporation on the physicochemical and sensory properties of noodle. Afr. J. Biotechnology. 2009, 8, 85–90. [Google Scholar]
- Demir, A.D.; Cronin, K. Modelling the kinetics of textural changes in hazelnuts during roasting. Simul. Model. Pract. Theory 2005, 13, 97–107. [Google Scholar] [CrossRef]
Organic Content (%) | Mineral Content (mg/100 g) | Content of Fatty Acids (%) | Content of Phenolic Compounds (mg/g) | ||||
---|---|---|---|---|---|---|---|
Dry matter | 95.9 | Ca | 177.4 | Oleic acid | 64.5 | Gallic acid | 30.1 |
Protein | 22.8 | P | 470.0 | Linoleic acid | 27.1 | Ferulic acid | 2.9 |
Ash | 2.5 | Mg | 205.0 | Palmitic acid | 4.6 | Cinnamic acid | 0.9 |
Starch | 2.3 | Na | 64.2 | Stearic acid | 1.2 | Genistein | 5.6 |
Total sugars | 6.3 | K | 592.5 | Palmitoleic acid | 0.8 | Rutin | 11.3 |
Crude fiber | 28.5 | Fe | 2.5 | SFA | 5.9 | ||
Amygdalin | 5.8 | Zn | 5.9 | MUFA | 65.3 | ||
Oil | 41.3 | Mn | 0.6 | PUFA | 27.1 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||
---|---|---|---|---|
Women (n = 14) | Men (n = 7) | Women (n = 7) | Men (n = 6) | |
Age (y) | 37.5 ± 9.13 | 33.14 ± 3.18 | 45.29 ± 14.10 | 41.50 ± 13.49 |
BW (kg) | 60.54 ± 8.55 | 81.16 ± 11.41 | 66.21 ± 17.29 | 91.18 ± 17.17 |
VFA (cm2) | 70.57 ± 20.60 | 60.76 ± 28.96 | 94.87 ± 37.21 | 106.85 ± 37.76 |
BMI (kg/m2) | 22.00 ± 2.44 | 25.68 ± 3.16 | 24.70 ± 4.84 | 29.19 ± 3.98 |
T-C (mmol/L) | 4.21 ± 0.57 | 4.31 ± 0.51 | 5.85 ± 0.64 | 5.80 ± 0.61 |
HDL-C (mmol/L) | 1.59 ± 0.33 | 1.38 ± 0.29 | 1.81 ± 0.41 | 1.42 ± 0.23 |
LDL-C (mmol/L) | 2.28 ± 0.49 | 2.42 ± 0.45 | 3.39 ± 0.38 | 3.84 ± 0.43 |
TG (mmol/L) | 0.75 ± 0.31 | 1.15 ± 0.74 | 1.42 ± 0.75 | 1.21 ± 0.41 |
GLU (mmol/L) | 5.06 ± 0.42 | 5.11 ± 0.12 | 5.01 ± 0.46 | 5.28 ± 0.79 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||||
---|---|---|---|---|---|---|
Day 0 | Day 42 | p-Value | Day 0 | Day 42 | p-Value | |
BW (kg) | 67.41 ± 13.63 | 67.04 ± 13.46 | 0.0331 | 77.74 ± 20.98 | 78.34 ± 21.39 | 0.0243 |
BFM (kg) | 16.27 ± 5.43 | 15.79 ± 5.29 | 0.0178 | 23.91 ± 8.67 | 24.45 ± 8.95 | >0.05 |
BFM (%) | 24.32 ± 7.02 | 23.70 ± 6.82 | 0.0234 | 30.70 ± 6.98 | 31.17 ± 6.53 | >0.05 |
VFA (cm2) | 67.30 ± 23.45 | 65.96 ± 22.94 | >0.05 | 100.40 ± 36.40 | 103.56 ± 38.25 | 0.0344 |
BMI (kg/m2) | 23.22 ± 3.16 | 23.10 ± 3.13 | 0.0463 | 26.77 ± 4.87 | 26.98 ± 5.02 | 0.0200 |
WHR | 0.866 ± 0.04 | 0.861 ± 0.04 | >0.05 | 0.944 ± 0.08 | 0.952 ± 0.07 | >0.05 |
WC (cm) | 82.0 ± 7.48 | 81.77 ± 7.32 | >0.05 | 96.45 ± 15.77 | 96.90 ± 15.26 | >0.05 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||||
---|---|---|---|---|---|---|
Day 0 | Day 42 | p-Value | Day 0 | Day 42 | p-Value | |
T-C | 4.25 ± 0.54 | 4.25 ± 0.65 | >0.05 | 5.83 ± 0.60 | 5.48 ± 0.83 | 0.0200 |
LDL-C | 2.33 ± 0.47 | 2.33 ± 0.56 | >0.05 | 3.60 ± 0.45 | 3.22 ± 0.62 | 0.0045 |
HDL-C | 1.52 ± 0.33 | 1.49 ± 0.31 | >0.05 | 1.63 ± 0.39 | 1.67 ± 0.54 | >0.05 |
TG | 0.73 (0.56–0.80) | 0.78 (0.63–0.92) | >0.05 | 1.31 (0.83–1.56) | 1.23 (0.88–1.62) | >0.05 |
GLU | 5.08 ± 0.35 | 5.24 ± 0.57 | >0.05 | 5.13 ± 0.62 | 5.25 ± 0.61 | >0.05 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||||
---|---|---|---|---|---|---|
Day 0 | Day 42 | p-Value | Day 0 | Day 42 | p-Value | |
VLDL | 0.81 ± 0.14 | 0.87 ± 0.20 | >0.05 | 1.14 ± 0.19 | 1.06 ± 0.15 | >0.05 |
IDL-A | 0.57 ± 0.14 | 0.62 ± 0.14 | >0.05 | 0.65 ± 0.26 | 0.76 ± 0.21 | >0.05 |
IDL-B | 0.31 ± 0.07 | 0.28 ± 0.08 | 0.0049 | 0.45 ± 0.16 | 0.46 ± 0.16 | >0.05 |
IDL-C | 0.43 ± 0.08 | 0.46 ± 0.09 | >0.05 | 0.62 ± 0.06 | 0.64 ± 0.18 | >0.05 |
LDL1 | 0.77 ± 0.18 | 0.72 ± 0.17 | >0.05 | 1.16 ± 0.22 | 1.00 ± 0.21 | 0.0035 |
LDL2 | 0.15 (0.07–0.21) | 0.08 (0.05–0.15) | 0.0393 | 0.52 (0.30–0.63) | 0.18 (0.13–0.38) | 0.0002 |
LDL3–7 | 0 (0–0) | 0 (0–0) | >0.05 | 0 (0–0.05) | 0 (0–0) | 0.0431 |
HDL | 1.15 ± 0.20 | 1.12 ± 0.22 | >0.05 | 1.33 ± 0.26 | 1.26 ± 0.30 | >0.05 |
Total LDL | 2.29 ± 0.38 | 2.25 ± 0.44 | >0.05 | 3.39 ± 0.43 | 3.09 ± 0.54 | 0.0019 |
Mean LDL particle size | 27.39 ± 0.27 | 27.48 ± 0.24 | 0.0326 | 27.24 ± 0.21 | 27.43 ± 0.14 | 0.0015 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||||
---|---|---|---|---|---|---|
Day 0 | Day 42 | p-Value | Day 0 | Day 42 | p-Value | |
hs-CRP (mg/L) | 0.26 (0.14–0.61) | 0.50 (0.21–0.98) | >0.05 | 1.46 (0.62–3.19) | 1.28 (0.62–3.24) | >0.05 |
CK (mg/L) | 1.93 ± 1.03 | 2.09 ± 1.19 | >0.05 | 1.76 ± 0.96 | 1.94 ± 0.89 | >0.05 |
ALP (µkat/L) | 0.80 ± 0.31 | 0.82 ± 0.29 | >0.05 | 0.97 ± 0.16 | 1.01 ± 0.20 | >0.05 |
AST (µkat/L) | 0.36 ± 0.11 | 0.31 ± 0.08 | 0.0075 | 0.39 ± 0.09 | 0.38 ± 0.11 | >0.05 |
ALT (µkat/L) | 0.35 ± 0.16 | 0.33 ± 0.1 | >0.05 | 0.45 ± 0.29 | 0.47 ± 0.21 | >0.05 |
GGT (µkat/L) | 0.27 ± 0.20 | 0.35 ± 0.14 | 0.0370 | 0.45 ± 0.30 | 0.46 ± 0.27 | >0.05 |
Parameter | NTC (n = 21) | ETC (n = 13) | ||||
---|---|---|---|---|---|---|
Difference a | p-Value b | p-Value c | Difference a | p-Value b | p-Value c | |
T-C (mmol/L) | 0.00 ± 0.44 | 0.0290 | >0.05 | 0.35 ± 0.47 | >0.05 | >0.05 |
LDL-C (mmol/L) | −0.01 ± 0.40 | 0.013 | >0.05 | 0.38 ± 0.39 | >0.05 | >0.05 |
HDL-C (mmol/L) | 0.02 ± 0.13 | >0.05 | >0.05 | −0.04 ± 0.19 | 0.014 | >0.05 |
TG (mmol/L) | −0.05 ± 0.22 | >0.05 | >0.05 | 0.04 ± 0.42 | >0.05 | >0.05 |
VLDL (mmol/L) | −0.06 ± 0.18 | 0.0087 | 0.0100 | 0.08 ± 0.19 | >0.05 | >0.05 |
IDL-C (mmol/L) | −0.04 ± 0.11 | 0.0078 | >0.05 | −0.03 ± 0.16 | >0.05 | >0.05 |
IDL-B (mmol/L) | 0.03 ± 0.04 | >0.05 | >0.05 | −0.01 ± 0.08 | >0.05 | >0.05 |
IDL-A (mmol/L) | −0.05 ± 0.13 | 0.0355 | >0.05 | −0.11 ± 0.22 | >0.05 | >0.05 |
LDL1 (mmol/L) | 0.05 ± 0.16 | >0.05 | >0.05 | 0.16 ± 0.16 | >0.05 | >0.05 |
LDL2 (mmol/L) | 0.06 ± 0.13 | >0.05 | >0.05 | 0.28 ± 0.20 | >0.05 | >0.05 |
LDL3–7 (mmol/L) | 0.00 ± 0.05 | >0.05 | >0.05 | 0.02 ± 0.03 | >0.05 | >0.05 |
LDL particle size (nm) | −0.86 ± 1.71 | >0.05 | >0.05 | −1.92 ± 1.71 | >0.05 | >0.05 |
GLU (mmol/L) | −0.17 ± 0.50 | 0.0243 | >0.05 | −0.12 ± 0.43 | >0.05 | >0.05 |
AST (µkat/L) | 0.06 ± 0.09 | >0.05 | >0.05 | 0.01 ± 0.08 | >0.05 | >0.05 |
ALT (µkat/L) | 0.02 ± 0.10 | >0.05 | >0.05 | −0.02 ± 0.17 | >0.05 | >0.05 |
ALP (µkat/L) | −0.03 ± 0.09 | >0.05 | >0.05 | −0.05 ± 0.08 | >0.05 | >0.05 |
GGT (µkat/L)) | −0.08 ± 0.16 | >0.05 | 0.0427 | −0.01 ± 0.08 | >0.05 | >0.05 |
CK (mg/L) | −0.16 ± 0.42 | >0.05 | >0.05 | −0.18 ± 0.79 | >0.05 | >0.05 |
hs-CRP (mg/L) | −0.04 ± 1.01 | >0.05 | >0.05 | 0.07 ± 0.76 | >0.05 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopčeková, J.; Kolesárová, A.; Schwarzová, M.; Kováčik, A.; Mrázová, J.; Gažarová, M.; Lenártová, P.; Chlebo, P.; Kolesárová, A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. Int. J. Environ. Res. Public Health 2022, 19, 857. https://doi.org/10.3390/ijerph19020857
Kopčeková J, Kolesárová A, Schwarzová M, Kováčik A, Mrázová J, Gažarová M, Lenártová P, Chlebo P, Kolesárová A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. International Journal of Environmental Research and Public Health. 2022; 19(2):857. https://doi.org/10.3390/ijerph19020857
Chicago/Turabian StyleKopčeková, Jana, Anna Kolesárová, Marianna Schwarzová, Anton Kováčik, Jana Mrázová, Martina Gažarová, Petra Lenártová, Peter Chlebo, and Adriana Kolesárová. 2022. "Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels" International Journal of Environmental Research and Public Health 19, no. 2: 857. https://doi.org/10.3390/ijerph19020857