Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Calculation of Agriculture and Ecology Water Demand
2.3.1. Crop Water Requirement
2.3.2. Ecological Water Demand
2.4. Balance of Water Resources Supply-Demand
2.5. Water Scarcity Index
3. Results
3.1. Total Water Supply
3.2. Total Water Demand
3.2.1. Agricultural Water Demand
3.2.2. Ecological Water Demand
3.2.3. Domestic and Industrial Water Demand
3.2.4. Change of the Total Water Demand
3.3. Analysis of Balances of Supply-Demand
3.3.1. Structural Composition
3.3.2. Gap of Water Supply and Water Demand
3.3.3. Water Scarcity Index
4. Discussion
4.1. Uncertainties in the Calculation of Agricultural and Ecological Water Demand
4.2. Potential Impact of Environmental Protection Policy on Water Supply-Demand Balance in the Aral Sea Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuo, Q.; Zhao, H.; Ma, J. Study on harmony equilibrium between water resources and economic society development. J. Hydraul. Eng. 2014, 45, 785–792. [Google Scholar]
- Wu, Z.; Suo, L. Advance about Study of Water Resources Optimal Distribution. J. Irrig. Drain. 2004, 23, 1–5. [Google Scholar]
- Viviroli, D.; Weingartner, R. The hydrological significance of mountains: From regional to global scale. Hydrol. Earth Syst. Sci. 2004, 8, 1016–1029. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, X.; Li, Y.; Bao, A.; Ma, Y. A simulation-based two-stage interval-stochastic pro-gramming model for water resources management in Kaidu-Konqi watershed, China. J. Arid. Land 2012, 4, 390–398. [Google Scholar] [CrossRef]
- Ikramova, M.; Khodjiev, A.; Misirkhonov, K. Effictiveness of Water Resources Use in Aral Sea Basin and Lower Reaches of the Amu Darya River. In Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1381–1396. [Google Scholar]
- Veldwisch, G.J.; Spoor, M. Contesting Rural Resources: Emerging ‘Forms’ of Agrarian Production in Uzbekistan. J. Peasant. Stud. 2008, 35, 424–451. [Google Scholar] [CrossRef]
- Trevisani, T. Land and power in Khorezm: Farmers, Communities and the State in Uzbekistan’s Decollectivisation Process. Ph.D. Thesis, Freie Universität Berlin, Berlin, Germany, 2008. [Google Scholar]
- Tischbein, B.; Manschadi, A.; Hornidge, A.; Conrad, C.; Lamers, J.; Oberkircher, L.; Schorcht, G.; Vlek, P. Proposals for the more efficient utilization of water resources in the Province of Khorezm, Uzbekistan. Hydrol. Wasserbewirtsch. 2011, 55, 116–125. [Google Scholar]
- Liu, Z.; Huang, Y.; Liu, T.; Li, J.; Xing, W.; Akmalov, S.; Peng, J.; Pan, X.; Guo, C.; Duan, Y. Water Balance Analysis Based on a Quantitative Evapotranspiration Inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sens. 2020, 12, 2317. [Google Scholar] [CrossRef]
- Khaydar, D.; Chen, X.; Huang, Y.; Ilkhom, M.; Liu, T.; Friday, O.; Farkhod, A.; Khusen, G.; Gulkaiyr, O. Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia. J. Arid. Land 2021, 13, 23–39. [Google Scholar] [CrossRef]
- Bobojonov, I. Modeling Crop and Water Allocation under Uncertainty in Irrigated Agriculture—A Case Study on the Khorezm Region, Uzbekistan. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 2009. [Google Scholar]
- Malsy, M.; Der Beek, T.A.; Flörke, M. Evaluation of large-scale precipitation data sets for water resources modelling in Central Asia. Environ. Earth Sci. 2015, 73, 787–799. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wei, J. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Wang, G.; Fan, Y. Aral Sea Basin Transboundary Water Cooperation: History, Present Situation and Reflections. J. Bound. Ocean. Stud. 2017, 2, 90–104. [Google Scholar]
- Benduhn, F.; Renard, P. A dynamic model of the Aral Sea water and salt balance. J. Mar. Syst. 2004, 47, 35–50. [Google Scholar] [CrossRef]
- Small, E.E.; Sloan, L.C.; Hostetler, S.; Giorgi, F. Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J. Geophys. Res. Space Phys. 1999, 104, 6583–6602. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Kouraev, A.V.; Papa, F.; Bergé-Nguyen, M.; Cazenave, A.; Aladin, N.; Plotnikov, I.S. Evolution of Sea Level of the Big Aral Sea from Satellite Altimetry and Its Implications for Water Balance. J. Great Lakes Res. 2005, 31, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Zan, C.; Huang, Y.; Li, J.; Liu, T.; Bao, A.; Xing, W.; Liu, Z. Analysis of water balance in Aral Sea and the influencing factors from 1990 to 2019. J. Lake Sci. 2021, 33, 1265–1275. [Google Scholar]
- Rahimzadegan, M.; Janani, A. Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agric. Water Manag. 2019, 217, 383–390. [Google Scholar] [CrossRef]
- Moseki, O.; Murray-Hudson, M.; Kashe, K. Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: Applying the CROPWAT model. Agric. Water Manag. 2019, 225, 105754. [Google Scholar] [CrossRef]
- Li, Z.; Fang, G.; Chen, Y.; Duan, W.; Mukanov, Y. Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming. Agric. Water Manag. 2020, 231, 106020. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Subyani, A.M.; Şen, Z. Regional fuzzy chain model for evapotranspiration estimation. J. Hydrol. 2017, 544, 233–241. [Google Scholar] [CrossRef]
- Ali, M.H.; Mubarak, S. Effective Rainfall Calculation Methods for Field Crops: An Overview, Analysis and New Formulation. Asian Res. J. Agric. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Veeranna, J.; Mishra, A. Estimation of evapotranspiration and irrigation scheduling of Lentil using CROPWAT 8.0 model for Anantapur District, Andhra Pradesh, India. J. AgriSearch. 2017, 4, 10204. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, H.; Ling, H.; Bai, J.; Fu, J.; Zhao, X. Ecological Water Requirements in the Lower Reaches of the Tarim River. J. Desert Res. 2013, 33, 1198–1205. [Google Scholar]
- EU. Report on the Review of the European Water Scarcity and Droughts Policy. In Communication from the Commission to the European Parliament and the Council; EU: Brussels, Belgium, 2012. [Google Scholar]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Seckler, D.; Amarasinghe, U.; Molden, D.; DeSilva, R.; Randolph, B. World Water Demand and Supply, 1990–2025: Scenarios and Issues; Research Report 19; International Water Management Institute: Colombo, Sri Lanka, 1998. [Google Scholar]
- Alcamo, J.; Henrichs, T.; Rösch, T. World Water in 2025-Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century. In Report A0002; Center for Environmental Systems Research, University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Sullivan, C.A.; Meigh, J.R.; Giacomello, A.M.; Fediw, T.; Lawrence, P.; Samad, M.; Mlote, S.; Hutton, C.; Allan, J.A.; Schulze, R.E.; et al. The water poverty index: Development and application at the community scale. Nat. Res. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savenije, H. Water scarcity indicators; the deception of the numbers. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 199–204. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Savenije, H.H.G. A simple approach to assess water scarcity integrating water quantity and quality. Ecol. Indic. 2013, 34, 441–449. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Opp, C.; Yang, D. Spatiotemporal supply-demand characteristics and economic benefits of crop water footprint in the semi-arid region. Sci. Total Environ. 2020, 738, 139502. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Li, X.; Hu, Y.; Hu, P. Evaluating and mapping water supply and demand for sustainable urban ecosystem management in Shenzhen, China. J. Clean. Prod. 2020, 251, 119754. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Yang, X.; Zhou, Z.; Pan, Y.; Li, M. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed. Ecosyst. Serv. 2020, 43, 101117. [Google Scholar] [CrossRef]
- Li, T.; Yang, S.; Tan, M. Simulation and optimization of water supply and demand balance in Shenzhen: A system dynamics approach. J. Clean. Prod. 2019, 207, 882–893. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Myers, J.A.M.; Cohen, E.C. Impacts of Multiple Stresses on Water Demand and Supply across the Southeastern United States1. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1441–1457. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J. Hydrol. 2016, 540, 257–273. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Liu, T.; Huang, Y.; De Maeyer, P.; Guo, C.; Ling, Y.; Akmalov, S. Quantitative Detection and Attribution of Groundwater Level Variations in the Amu Darya Delta. Water 2020, 12, 2869. [Google Scholar] [CrossRef]
- Schieder, T. Analysis of water use and crop allocation for the Khorezm region in Uzbekistan using an integrated hydrologic-economic model. Chin. J. Pain Med. 2011, 8, 67–69. [Google Scholar]
- Bortnik, V.N. Changes in the water-level and hydrological balance of the Aral Sea. In The Aral Sea Basin; Micklin, P.P., Williams, W.D., Eds.; NATO ASI Series (Series 2. Environment); Springer: Berlin/Heidelberg, Germany, 1996; Volume 12. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Suo, C.; Liu, Y. Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia. Agric. Water Manag. 2019, 216, 76–88. [Google Scholar] [CrossRef]
Data Types | Period | Data Sources/Description | |
---|---|---|---|
LULC | 1970, 1990, 2000, 2010, 2015 | “Earth System Science Data Sharing Platform—Xinjiang and Central Asia Scientific Data Sharing Platform” | |
Crop planting pattern | 1970–1987 | Statistical Yearbook of the National Economy published year by year in the USSR from 1960–1987 provided by the Literature Information Center, Xinjiang Branch of the Chinese Academy of Sciences (http://3w.xjlas.ac.cn/category_59/index.aspx) (accessed on 19 August 2021) | |
1988–1990 | The Database Official Statistics of the Countries of the Commonwealth of Independent States. Annual statistics published in CD format | ||
1991–1999 | The National Bureau of Statistics of the Republic of Uzbekistan (https://stat.uz/uz) (accessed on 19 August 2021) | ||
2000–2019 | CAWA GREEN PROJECT (https://wuemoca.geo.uni-halle.de/app/#) (accessed on 19 August 2021) | ||
Meteorological data | 1970–2019 | The National Oceanic and Atmospheric Administration (https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily) (accessed on 19 August 2021) (http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.04/data/) (accessed on 19 August 2021) | |
Water Resources Data | Domestic | 1970–2019 | The National Bureau of Statistics of the Republic of Uzbekistan (https://stat.uz/uz) (accessed on 19 August 2021) Ministry of Water Resources of the Republic of Uzbekistan (https://water.gov.uz/en) (accessed on 19 August 2021) ICWC (http://www.icwc-aral.uz/icwc_bulletins.htm) (accessed on 19 August 2021) |
Industrial | 1970–1985 | Based on linear trend extrapolation of 1986–2019 data | |
1986–2019 | the National Bureau of Statistics of the Republic of Uzbekistan (https://stat.uz/uz) (accessed on 19 August 2021) Ministry of Water Resources of the Republic of Uzbekistan (https://water.gov.uz/en) (accessed on 19 August 2021) ICWC (http://www.icwc-aral.uz/icwc_bulletins.htm) (accessed on 19 August 2021) | ||
Runoff | 1970–2019 | (http://www.cawater-info.net/water_quality_in_ca/syr_e.htm) (accessed on 19 August 2021) | |
Area of Aral Sea | 1970–2019 | Benduhn and Renard [15]; Small et al., [16]; Crétaux et al., [17]; Zan et al., [18] |
Crop. | Vegetation Period | Kc | |||||
---|---|---|---|---|---|---|---|
Planting Date | Harvesting Date | Days (d) | Initial Stage | Development Stage | Mid Season Stage | Late-Season Stage | |
Cotton | 16 Apr | 28 Oct | 196 | 0.50 | 0.83 | 1.15 | 0.60 |
Wheat | 15 Oct | 10 Jun | 238 | 0.40 | 0.78 | 1.15 | 0.25 |
Rice | 11 May | 6 Nov | 179 | 1.05 | 1.13 | 1.20 | 0.70 |
Maize | 12 Apr | 8 Aug | 118 | 0.30 | 0.75 | 1.20 | 0.60 |
Sunflower | 11 Apr | 25 Jul | 105 | 0.40 | 0.78 | 1.15 | 0.55 |
Vegetables | 21 Apr | 11 Aug | 112 | 0.70 | 0.88 | 1.05 | 0.95 |
Orchard | 16 Mar | 25 Sep | 193 | 0.60 | 0.85 | 1.10 | 0.70 |
Melon | 29 Apr | 25 Aug | 119 | 0.50 | 0.68 | 0.85 | 0.60 |
Range of WSI | Level of Water Shortage |
---|---|
0 < WSI ≤ 0.1 | Surplus |
0.1 < WSI ≤ 0.2 | Slight shortage |
0.2 < WSI ≤ 0.4 | Moderate shortage |
0.4 < WSI ≤ 1 | Serious shortage |
1 < WSI | Awful shortage |
Land Use Types | 1970 | 1990 | 2000 | 2010 | 2015 | |||||
---|---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Cultivate | 10,296.93 | 10.79 | 13,080.12 | 13.70 | 12,650.84 | 13.25 | 13,199.78 | 13.83 | 13,908.31 | 14.57 |
Woodland | 3452.36 | 3.62 | 1112.80 | 1.17 | 979.90 | 1.03 | 1009.70 | 1.06 | 983.36 | 1.03 |
Grassland | 12,782.60 | 13.39 | 12,899.22 | 13.51 | 13,994.22 | 14.66 | 12,913.90 | 13.53 | 12,018.62 | 12.59 |
Urban land | 699.24 | 0.73 | 611.46 | 0.64 | 1303.33 | 1.36 | 1419.04 | 1.49 | 1612.79 | 1.69 |
Water | 61,717.52 | 64.65 | 35,288.20 | 36.97 | 22,089.12 | 23.14 | 9480.07 | 9.93 | 5325.77 | 5.58 |
Wetland | 1698.97 | 1.78 | 2193.14 | 2.30 | 3394.82 | 3.56 | 2674.82 | 2.80 | 3555.08 | 3.72 |
Unutilized land | 4810.72 | 5.04 | 30,273.39 | 31.71 | 41,046.09 | 43.00 | 54,761.01 | 57.37 | 58,054.38 | 60.82 |
Years | Counts of Year of Water Shortage | Water Shortage Volume /108 m3 | Historical Guarantee Rate/% |
---|---|---|---|
1070s (1970–1979) | 10 | 396.93 | 0 |
1980s (1980–1989) | 10 | 330.70 | 0 |
1990s (1990–1999) | 10 | 173.18 | 0 |
2000s (2000–2009) | 9 | 89.45 | 10 |
2010s (2010–2019) | 4 | 29.72 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, Y.; Liu, T.; Zan, C.; Ling, Y.; Guo, C. Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia. Int. J. Environ. Res. Public Health 2022, 19, 743. https://doi.org/10.3390/ijerph19020743
Wang Z, Huang Y, Liu T, Zan C, Ling Y, Guo C. Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia. International Journal of Environmental Research and Public Health. 2022; 19(2):743. https://doi.org/10.3390/ijerph19020743
Chicago/Turabian StyleWang, Zheng, Yue Huang, Tie Liu, Chanjuan Zan, Yunan Ling, and Chenyu Guo. 2022. "Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia" International Journal of Environmental Research and Public Health 19, no. 2: 743. https://doi.org/10.3390/ijerph19020743