Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Laboratory Analysis
2.3. Soil Quality Assessment Method
2.3.1. Standardization of Soil Fertility Indicators
2.3.2. Standardization of Soil Environmental Indicators
2.3.3. Calculation of the SFI and SEI
2.3.4. Soil Quality Comprehensive Assessment: An Entropy-Based TOPSIS Model
2.4. Spatial Interpolation Method
3. Results
3.1. Characteristics of Soil Quality Indicators
3.2. Spatial Distribution of Soil Fertility Indicators
3.3. Spatial Distribution of Soil Heavy Metal Concentrations
3.4. Pollution Status of Heavy Metals in Soils
3.5. Comprehensive Assessment Results
4. Discussion
4.1. Correlation Analysis between Different Soil Indicators
4.2. Soil Fertility Status and Heavy Metal Pollution
4.3. Soil Quality Analysis and Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pepper, I.L.; Gerba, C.P.; Newby, D.T.; Rice, C.W. Soil: A public health threat or savior? Crit. Rev. Environ. Sci. Technol. 2009, 39, 416–432. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Zhang, N.; Nunan, N.; Hirsch, P.R.; Sun, B.; Zhou, J.; Liang, Y. Theory of microbial coexistence in promoting soil–plant ecosystem health. Biol. Fertil. Soils 2021, 57, 897–911. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Karlen, D.L.; Mausbach, M.; Doran, J.W.; Cline, R.; Harris, R.; Schuman, G. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.; Parkin, T. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Sssa Special Publications: Soil Science Society of American: Madison, WI, USA, 1994. [Google Scholar]
- Liu, Y.; Wang, H.; Zhang, H.; Liber, K. A comprehensive support vector machine-based classification model for soil quality assessment. Soil Tillage Res. 2016, 155, 19–26. [Google Scholar] [CrossRef]
- Li, F.; Liu, W.; Lu, Z.; Mao, L.; Xiao, Y. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. 2020, 192, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.N.; Zhang, Y.; Chen, Z.; Wang, X.; Huang, B. Comprehensive assessments of soil fertility and environmental quality in plastic greenhouse production systems. Geoderma 2021, 385, 114899. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, R.; Li, H.; Zhao, X.; Liu, X. Heavy Metal Pollution and Soil Quality Assessment under Different Land Uses in the Red Soil Region, Southern China. Int. J. Environ. Res. Public Health 2022, 19, 4125. [Google Scholar] [CrossRef]
- Fang, C.; Zhao, S. A comparative study of spatiotemporal patterns of urban expansion in six major cities of the Yangtze River Delta from 1980 to 2015. Ecosyst. Health Sust. 2018, 4, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Suzhou Municipal People’s Government. Available online: https://www.suzhou.gov.cn/zl70nfdxsd/jjxzgcl70zn/201912/8050e3d34ff643048ef7b0d31dd9740b.shtml (accessed on 28 September 2019).
- Liu, G.; Zhang, L.; Zhang, Q.; Musyimi, Z. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China. J. Sci. Food Agric. 2015, 95, 480–489. [Google Scholar] [CrossRef]
- Wang, H.; Li, W.; Zhu, C.; Tang, X. Analysis of Heavy Metal Pollution in Cultivated Land of Different Quality Grades in Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2021, 18, 9876. [Google Scholar] [CrossRef]
- Chen, X. Suzhou City Year Book; Gu Wu Xuan Press: Suzhou, China, 2020. [Google Scholar]
- Zhang, Q.; Zhu, C.; Liu, C.L.; Jiang, T. Environmental change and its impacts on human settlement in the Yangtze Delta, P.R. China. Catena 2005, 60, 267–277. [Google Scholar] [CrossRef]
- Yang, N. Spatial Variation and Risk Assessment of Heavy Metals in the Soil of Delta Region Chanjiang River. Master’s Thesis, Shandong Normal University, Shandong, Beijing, 2010. [Google Scholar]
- Xie, E.; Zhao, Y.; Li, H.; Shi, X.; Lu, F.; Zhang, X.; Peng, Y. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015. Agric. Ecosyst. Environ. 2019, 272, 95–104. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Li, Y.; Dong, Z.; Feng, D.; Zhang, X.; Jia, Z.; Fan, Q.; Liu, K. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China. Sci. Rep. 2022, 12, 3855. [Google Scholar] [CrossRef]
- Gan, T.; Zhao, N.; Yin, G.; Ma, M.; Meng, D.; Fang, L.; Yang, R.; Liu, W. A Review on Heavy Metal Pollution of Agricultural Land Soil in the Yangtze River Delta and Relevant Pollution Control Strategy. Strateg. Study CAE 2021, 23, 174–184. [Google Scholar]
- Yang, L.; Liu, G.; Di, L.; Wu, X.; You, W.; Huang, B. Occurrence, speciation, and risks of trace metals in soils of greenhouse vegetable production from the vicinity of industrial areas in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2019, 26, 8696–8708. [Google Scholar] [CrossRef]
- Mclean, J.E.; Bledsoe, B.E. Behavior of Metals in Soils; U.S. Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Ministry of Ecology and Environmental Protection of the People’s Republic of China. The Technical Specification for Soil Environmental Monitoring (HJ/T 166-2004); Environmental Protection Administration of China: Beijing, China , 2004. [Google Scholar]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- National Soil Survey Office. Soil Survey Technology in China; Agriculture Press: Beijing, China, 1992. [Google Scholar]
- Xu, J.; Xie, Z.; Lv, X. Indices and Assessment of Soil Qulity; Science Press: Beijing, China, 2010. [Google Scholar]
- Cheng, J.; Ding, C.; Li, X.; Zhang, T.; Wang, X. Soil quality evaluation for navel orange production systems in central subtropical China. Soil Tillage Res. 2016, 155, 225–232. [Google Scholar] [CrossRef]
- Gong, L.; Ran, Q.; He, G.; Tiyip, T. A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil Tillage Res. 2015, 146, 223–229. [Google Scholar] [CrossRef]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Tillage Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Meng, M.; Yang, L.; Wei, B.; Cao, Z.; Yu, J.; Liao, X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. Ecotoxicol. Environ. Saf. 2021, 215, 112106. [Google Scholar] [CrossRef]
- State Environmental Protection Administration. Background Contents of Elements in Soils of China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- GB 15618-2018. Soil Environmental Quality Agricultural Land Soil Pollution Risk Control Standards. State Administration of Market Regulation: Beijing, China; Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2018.
- Xie, N.; Kang, C.; Ren, D.; Zhang, L. Assessment of the variation of heavy metal pollutants in soil and crop plants through field and laboratory tests. Sci. Total Environ. 2022, 811, 152343. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Wang, D.; Fan, J.; Hu, Y.; Kang, H.; Chang, M.; Pang, Y.; Yang, Y.; Feng, Y. Effects of vegetation, terrain and soil layer depth on eight soil chemical properties and soil fertility based on hybrid methods at urban forest scale in a typical loess hilly region of China. PLoS ONE 2018, 13, e0205661. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, M.; Lv, F.; Huang, Q.; Nie, J.; Zhang, H.; Yu, H. Evaluation Method on Soil Fertility Under Long-Term Fertilization. Sci. Agric. Sin. 2012, 45, 4197–4204. (In Chinese) [Google Scholar]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Xu, Y.S. Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Res. 2020, 187, 116437. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, X.; Zhu, B.; He, K.; Wang, P. Measuring the maturity of carbon market in China: An entropy-based TOPSIS approach. J. Cleaner Prod. 2019, 229, 94–103. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Long, T.; Sun, S.; Gao, J. Mega-city region sustainability assessment and obstacles identification with GIS–entropy–TOPSIS model: A case in Yangtze River Delta urban agglomeration, China. J. Cleaner Prod. 2021, 294, 126147. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Shi, Y.; Wang, C.; Li, B.; Li, Y.; Wu, S. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total. Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Wu, H.; Xu, C.; Wang, J.; Xiang, Y.; Ren, M.; Qie, H.; Zhang, Y.; Yao, R.; Li, L.; Lin, A. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotoxicol. Environ. Saf. 2021, 213, 112046. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- Haldar, K.; Kujawa-Roeleveld, K.; Dey, P.; Bosu, S.; Datta, D.K.; Rijnaarts, H.H.M. Spatio-temporal variations in chemical-physical water quality parameters influencing water reuse for irrigated agriculture in tropical urbanized deltas. Sci. Total. Environ. 2020, 708, 134559. [Google Scholar] [CrossRef]
- Wang, F.; Guan, Q.; Tian, J.; Lin, J.; Yang, Y.; Yang, L.; Pan, N. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. Catena 2020, 191, 104573. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil Spatial Variability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194. [Google Scholar]
- Förstner, U.; Müller, G. Concentrations of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact. GeoJournal 1981, 5, 417–432. [Google Scholar] [CrossRef]
- Liu, G.; Shi, Y.; Guo, G.; Zhao, L.; Niu, J.; Zhang, C. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J. Cleaner Prod. 2020, 251, 119721. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, R.; Li, Q.; Yang, Z. Effects of straw application on nitrate leaching in fields in the Yellow River irrigation zone of Ningxia, China. Sci. Rep. 2018, 8, 954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Yang, J.L.; Zhao, X.R.; Yang, S.H.; Mulder, J.; Dorsch, P.; Zhang, G.L. Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: An in situ (15)N labeling study. Sci. Total Environ. 2022, 816, 151596. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, H.; Yu, H.; Li, W.; Ye, Y.; Biswas, A. Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010. Sci. Rep. 2018, 8, 2702. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Shang, F.; Lu, X.; Huang, X.; Song, Y.; Liu, B.; Zhang, Q.; Liu, X.; Cao, J.; Xu, T.; et al. Unexpected response of nitrogen deposition to nitrogen oxide controls and implications for land carbon sink. Nat. Commun. 2022, 13, 3126. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Guney, M.; Yagofarova, A.; Yapiyev, V.; Schönbach, C.; Kim, J.R.; Inglezakis, V.J. Distribution of potentially toxic soil elements along a transect across Kazakhstan. Geoderma Reg. 2020, 21, e00281. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liu, C.; Wang, Y.; Li, M. Variation of net anthropogenic phosphorus inputs (NAPI) and riverine phosphorus fluxes in seven major river basins in China. Sci. Total Environ. 2020, 742, 140514. [Google Scholar] [CrossRef]
- Bai, Z.; Li, H.; Yang, X.; Zhou, B.; Shi, X.; Wang, B.; Li, D.; Shen, J.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, Z.; Ji, J.; Yu, T.; Chen, G.; Li, J.; Xia, X.; Zhang, M.; Yuan, X. Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J. Geochem. Explor. 2014, 139, 68–84. [Google Scholar] [CrossRef]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Peng, J.Y.; Zhang, S.; Han, Y.; Bate, B.; Ke, H.; Chen, Y. Soil heavy metal pollution of industrial legacies in China and health risk assessment. Sci. Total Environ. 2022, 816, 151632. [Google Scholar] [CrossRef] [PubMed]
- Dharma-Wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ. Geochem. Health 2018, 40, 2739–2759. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Wang, Z.; Shen, G.; Chen, X.; Tang, Z.; Guo, C.; Gu, H.; Fu, K. Heavy metals accumulation in soil after 4 years of continuous land application of swine manure: A field-scale monitoring and modeling estimation. Chemosphere 2018, 210, 1029–1034. [Google Scholar] [CrossRef]
- Peng, H.; Chen, Y.; Weng, L.; Ma, J.; Ma, Y.; Li, Y.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total. Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef]
- Liu, W.R.; Zeng, D.; She, L.; Su, W.X.; He, D.C.; Wu, G.Y.; Ma, X.R.; Jiang, S.; Jiang, C.H.; Ying, G.G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef]
- Khan, M.I.; Gwon, H.S.; Alam, M.A.; Song, H.J.; Das, S.; Kim, P.J. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Appl. Soil Ecol. 2020, 147, 103400. [Google Scholar] [CrossRef]
- Tao, Y.; Jin, M.; Tang, Y.; Zhu, X.; Lu, C.; Wang, H.; Shi, L.; Zhou, X.; Shen, M. Partial nitrogen fertilizer substitution by aquatic plant compost to improve rice yield and paddy soil fertility. Trans. Chin. Soc. Agric. Eng. 2017, 33, 196–202. (In Chinese) [Google Scholar]
Indicator | I | II | III | IV | V |
---|---|---|---|---|---|
pH | 6.0–7.0 | 6.0–5.5 | 5.5–5.0 | 5.0–4.5 | ≤4.5 |
7.0–7.5 | 7.5–8.0 | 8.0–8.5 | ≥8.5 | ||
OM (g/kg) | >40.0 | 30.0–40.0 | 20.0–30.0 | 10.0–20.0 | <10 |
TN (g/kg) | >2 | 1.5–2.0 | 1.0–1.5 | 0.75–1.0 | <0.75 |
AHN (mg/kg) | >150 | 120–150 | 90–120 | 60–90 | <60 |
AP (mg/kg) | >40.0 | 20.0–40.0 | 10.0–20.0 | 5.0–10.0 | <5 |
AK (mg/kg) | >200.0 | 150.0–200.0 | 100.0–150.0 | 50.0–100.0 | <50 |
Indicator | ||||
---|---|---|---|---|
pH | 4.5 | 8.5 | 6.0 | 7.0 |
OM (g/kg) | 10.0 | 30.0 | ||
TN (g/kg) | 0.75 | 1.5 | ||
AHN (mg/kg) | 60 | 120 | ||
AP (mg/kg) | 5.0 | 20.0 | ||
AK (mg/kg) | 50.0 | 150.0 |
Indicators | pH | SOM | TN | AHN | AP | AK | Cr | Ni | Cu | Zn | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 4.11 | 3.71 | 0.10 | 19.44 | 3.42 | 54.67 | 17.79 | 7.89 | 6.19 | 23.20 | 0.076 | 16.22 | |
Twenty-fifth percentile | 5.53 | 18.47 | 1.09 | 72.92 | 11.04 | 101.83 | 29.92 | 14.75 | 10.10 | 35.78 | 0.139 | 28.47 | |
Fiftieth percentile | 6.18 | 27.28 | 1.59 | 112.30 | 19.08 | 150.67 | 36.22 | 17.42 | 11.82 | 39.53 | 0.172 | 32.72 | |
Seventy-fifth percentile | 7.42 | 35.54 | 2.19 | 158.47 | 36.49 | 195.75 | 45.89 | 20.93 | 14.83 | 49.96 | 0.215 | 36.52 | |
Maximum | 8.34 | 76.90 | 3.87 | 319.86 | 404.62 | 444.00 | 493.09 | 244.97 | 49.03 | 167.99 | 0.644 | 81.43 | |
Mean | 6.44 | 28.17 | 1.63 | 118.16 | 38.31 | 160.63 | 49.44 | 23.43 | 13.71 | 44.92 | 0.196 | 34.35 | |
CV (%) | 16.20 | 51.03 | 44.12 | 49.11 | 165.95 | 48.16 | 130.84 | 134.71 | 45.50 | 39.09 | 48.09 | 31.06 | |
Background value a | / | / | / | / | / | / | 77.80 | 26.70 | 22.30 | 62.60 | 0.126 | 26.20 | |
Risk screening values b | pH ≤ 5.5 | / | / | / | / | / | / | 150 | 60 | 50 | 200 | 0.3 | 70 |
5.5 < pH ≤ 6.5 | / | / | / | / | / | / | 150 | 70 | 50 | 200 | 0.3 | 90 | |
6.5 < pH ≤ 7.5 | / | / | / | / | / | / | 200 | 100 | 100 | 250 | 0.3 | 120 | |
pH > 7.5 | / | / | / | / | / | / | 250 | 190 | 100 | 300 | 0.6 | 170 | |
Percent c (%) | / | / | / | / | / | / | 5.74 | 8.20 | 8.20 | 10.66 | 86.07 | 84.43 | |
Percent d (%) | / | / | / | / | / | / | 3.28 | 3.28 | 0 | 0 | 8.20 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Wang, G.; Zhang, H.; Yu, R.; Li, N.; Zheng, J.; Yu, Y. Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China. Int. J. Environ. Res. Public Health 2022, 19, 12912. https://doi.org/10.3390/ijerph191912912
Zhang X, Li Y, Wang G, Zhang H, Yu R, Li N, Zheng J, Yu Y. Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China. International Journal of Environmental Research and Public Health. 2022; 19(19):12912. https://doi.org/10.3390/ijerph191912912
Chicago/Turabian StyleZhang, Xiangling, Yan Li, Genmei Wang, Huanchao Zhang, Ruisi Yu, Ning Li, Jiexiang Zheng, and Ye Yu. 2022. "Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China" International Journal of Environmental Research and Public Health 19, no. 19: 12912. https://doi.org/10.3390/ijerph191912912
APA StyleZhang, X., Li, Y., Wang, G., Zhang, H., Yu, R., Li, N., Zheng, J., & Yu, Y. (2022). Soil Quality Assessment in Farmland of a Rapidly Industrializing Area in the Yangtze Delta, China. International Journal of Environmental Research and Public Health, 19(19), 12912. https://doi.org/10.3390/ijerph191912912