Kinetic Effects of 6 Weeks’ Pilates or Balance Training in College Soccer Players with Chronic Ankle Instability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Isokinetic Ankle Strength
2.3. Functional Hop Tests
2.4. Dynamic Balance
2.5. Subjective Ankle Score
2.6. Training Programs
2.6.1. Pilates Training
2.6.2. Balance Training
2.7. Data Analysis
3. Results
3.1. General Characteristics of Participants
3.2. Isokinetic Ankle Strength
3.3. Functional Hop Tests
3.4. Dynamic Balance
3.5. Subjective Ankle Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, M.M.; Kerr, Z.Y.; Marshall, S.W.; Wikstrom, E.A. Epidemiology of ankle sprains and chronic ankle instability. J. Athl. Train. 2019, 54, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanen, L.; Docherty, C.L.; Van Der Pol, B.; Simon, J.; Schrader, J. Prevalence of chronic ankle instability in high school and division I athletes. Foot Ankle Spec. 2014, 7, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.; Delahunt, E.; Caulfield, B.; Hertel, J.; Ryan, J.; Bleakley, C. The incidence and prevalence of ankle sprain injury: A systematic review and meta-analysis of prospective epidemiological studies. Sports Med. 2014, 44, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.N.; Van Lunen, B.L.; Hoch, M.C. Health-related quality of life in individuals with chronic ankle instability. J. Athl. Train. 2014, 49, 758–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.; Caulfield, B.; Docherty, C.; Fourchet, F.; Fong, D.; Hertel, J.; Hiller, C.; Kaminski, T. Selection criteria for patients with chronic ankle instability in controlled research: A position statement of the International Ankle Consortium. J. Orthop. Sports Phys. Ther. 2013, 43, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Gribble, P.A.; Bleakley, C.M.; Caulfield, B.M.; Docherty, C.L.; Fourchet, F.; Fong, D.T.-P.; Hertel, J.; Hiller, C.E.; Kaminski, T.W.; McKeon, P.O. 2016 consensus statement of the International Ankle Consortium: Prevalence, impact and long-term consequences of lateral ankle sprains. Br. J. Sports Med. 2016, 50, 1493–1495. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, H.-Y.; Zhang, J.; Hua, Y.-H.; Chen, S.-Y. Difference in postural control between patients with functional and mechanical ankle instability. Foot Ankle Int. 2014, 35, 1068–1074. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An updated model of chronic ankle instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef] [Green Version]
- McKeon, P.O.; Wikstrom, E.A. Sensory-targeted ankle rehabilitation strategies for chronic ankle instability. Med. Sci. Sports Exerc. 2016, 48, 776–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vasconcelos, G.S.; Cini, A.; Sbruzzi, G.; Lima, C.S. Effects of proprioceptive training on the incidence of ankle sprain in athletes: Systematic review and meta-analysis. Clin. Rehabil. 2018, 32, 1581–1590. [Google Scholar] [CrossRef]
- Wright, C.J.; Linens, S.W.; Cain, M.S. A randomized controlled trial comparing rehabilitation efficacy in chronic ankle instability. J. Sport Rehabil. 2017, 26, 238–249. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Kim, Y.H.; Kan, W. Comparison of the effect of resistance and balance training on isokinetic eversion strength, dynamic balance, hop test, and ankle score in ankle sprain. Life 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.A.; Chomistek, A.K.; Kingma, J.J.; Docherty, C.L. Balance-and strength-training protocols to improve chronic ankle instability deficits, part I: Assessing clinical outcome measures. J. Athl. Train. 2018, 53, 568–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.R.; Fabrin, L.F.; de Oliveira Gil, A.W.; Benassi, G.H.; Camargo, M.Z.; da Silva, R.A.; de Lima, R.R. Acute effect of core stability and sensory-motor exercises on postural control during sitting and standing positions in young adults. J. Bodyw. Mov. Ther. 2021, 28, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Villaquiran-Hurtado, A.; Molano-Tobar, N.J.; Portilla-Dorado, E.; Tello, A. Flexibility, dynamic balance and core stability for injury prevention in university athletes. Univ. Y Salud 2020, 22, 148–156. [Google Scholar] [CrossRef]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: Prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef]
- Dastmanesh, S.; Shojaedin, S.S.; Eskandari, E. The effects of core stabilization training on postural control of subjects with chronic ankle instability. Ann. Biol. Res. 2012, 3, 3926–3930. [Google Scholar]
- Mohammadpour, N.; Rezaie, I.; Hadadi, M. The Relationship between Core Muscles Dysfunction and Chronic Ankle Instability: A Review. J. Sport Biomech. 2019, 5, 72–81. [Google Scholar] [CrossRef]
- Calicchio, A.; Ludwig, G.; Debeliso, M. Is There a Relationship Between Core Muscular Strength and Chronic Ankle Instability? Southern Utah University: Cedar City, UT, USA, 2016. [Google Scholar]
- Lee, K. The relationship of trunk muscle activation and core stability: A biomechanical analysis of pilates-based stabilization exercise. Int. J. Environ. Res. Public Health 2021, 18, 12804. [Google Scholar] [CrossRef]
- Eliks, M.; Zgorzalewicz-Stachowiak, M.; Zeńczak-Praga, K. Application of Pilates-based exercises in the treatment of chronic non-specific low back pain: State of the art. Postgrad. Med. J. 2019, 95, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Marques, N.R.; Morcelli, M.H.; Hallal, C.Z.; Gonçalves, M. EMG activity of trunk stabilizer muscles during Centering Principle of Pilates Method. J. Bodyw. Mov. Ther. 2013, 17, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Zapparoli, F.Y.; Riberto, M. Isokinetic evaluation of the hip flexor and extensor muscles: A systematic review. J. Sport Rehabil. 2017, 26, 556–566. [Google Scholar] [CrossRef]
- Terrier, R.; Degache, F.; Fourchet, F.; Gojanovic, B.; Forestier, N. Assessment of evertor weakness in patients with chronic ankle instability: Functional versus isokinetic testing. Clin. Biomech. 2017, 41, 54–59. [Google Scholar] [CrossRef]
- Rosen, A.B.; Needle, A.R.; Ko, J. Ability of functional performance tests to identify individuals with chronic ankle instability: A systematic review with meta-analysis. Clin. J. Sport Med. 2019, 29, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Hartley, E.M.; Hoch, M.C.; Boling, M.C. Y-balance test performance and BMI are associated with ankle sprain injury in collegiate male athletes. J. Sci. Med. Sport 2018, 21, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Goulart Neto, A.M.; Maffulli, N.; Migliorini, F.; de Menezes, F.S.; Okubo, R. Validation of Foot and Ankle Ability Measure (FAAM) and the Foot and Ankle Outcome Score (FAOS) in individuals with chronic ankle instability: A cross-sectional observational study. J. Orthop. Surg. Res. 2022, 17, 1–7. [Google Scholar] [CrossRef]
- Pilates, S.; Merrithew, L.G.; Stott-Merrithew, M. Comprehensive matwork; Stott Pilates: Toronto, ON, Canada, 2001. [Google Scholar]
- Page, P.J. Pilates Illustrated; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Black, M. Centered: Organizing the Body Through Kinesiology, Movement Theory and Pilates Technique; Handspring Publishing: London, UK, 2015. [Google Scholar]
- Qu, X.; Li, K.; Nam, S. Effects of Mobile-Based Rehabilitation in Adolescent Football Players with Recurrent Lateral Ankle Sprains during the COVID-19 Pandemic. Healthcare 2022, 10, 412. [Google Scholar]
- Laudner, K.G.; Koschnitzky, M.M. Ankle muscle activation when using the Both Sides Utilized (BOSU) balance trainer. J. Strength Cond. Res. 2010, 24, 218–222. [Google Scholar] [CrossRef]
- Faizullin, I.; Faizullina, E. Effects of balance training on post-sprained ankle joint instability. Int. J. Risk Saf. Med. 2015, 27, S99–S101. [Google Scholar] [CrossRef] [Green Version]
- Lizardo, F.B.; Ronzani, G.M.; Sousa, L.R.; de Oliveira Silva, D.C.; Santos, L.A.; Lopes, P.R.; Bérzin, F.; Bigaton, D.R. Proprioceptive exercise with bosu maximizes electromyographic activity of the ankle muscles. Biosci. J. 2017, 33, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Feger, M.A.; Snell, S.; Handsfield, G.G.; Blemker, S.S.; Wombacher, E.; Fry, R.; Hart, J.M.; Saliba, S.A.; Park, J.S.; Hertel, J. Diminished foot and ankle muscle volumes in young adults with chronic ankle instability. Orthop. J. Sports Med. 2016, 4, 2325967116653719. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.-K.; Park, J.-K.; Choi, S.-M.; Kang, S.-W.; SooHoo, N.F. The peroneal strength deficits in patients with chronic ankle instability compared to ankle sprain copers and normal individuals. Foot Ankle Surg. 2019, 25, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Eechaute, C.; Vaes, P.; Duquet, W. The dynamic postural control is impaired in patients with chronic ankle instability: Reliability and validity of the multiple hop test. Clin. J. Sport Med. 2009, 19, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Sonepat, H. Effect of wobble board balance training program on static balance, dynamic balance & triple hop distance in male collegiate basketball athlete. Int. J. Physiother. Res. 2014, 2, 657–662. [Google Scholar]
- Aslan, A.K.; Erkmen, N.; Aktaş, S.; Güven, F. Postural control and functional performance after core training in young soccer players. Malays. J. Mov. Health Exerc. 2018, 7, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Haitz, K.; Shultz, R.; Hodgins, M.; Matheson, G.O. Test-retest and interrater reliability of the functional lower extremity evaluation. J. Orthop. Sports Phys. Ther. 2014, 44, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.-H.; Lee, G.-C. Effect of core stability training using pilates on lower extremity muscle strength and postural stability in healthy subjects. Isokinet. Exerc. Sci. 2012, 20, 141–146. [Google Scholar] [CrossRef]
- Hill, J.; Leiszler, M. Review and role of plyometrics and core rehabilitation in competitive sport. Curr. Sports Med. Rep. 2011, 10, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Ringhof, S.; Stein, T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018, 58, 140–147. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.H.; Lee, S.; Seo, S.G. Characteristics of the balance ability and isokinetic strength in ankle sprain. Isokinet. Exerc. Sci. 2020, 28, 239–245. [Google Scholar] [CrossRef]
- Sierra-Guzmán, R.; Jiménez, F.; Abián-Vicén, J. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength. Clin. Biomech. 2018, 54, 28–33. [Google Scholar] [CrossRef]
- Terada, M.; Kosik, K.B.; McCann, R.S.; Drinkard, C.; Gribble, P.A. Corticospinal activity during a single-leg stance in people with chronic ankle instability. J. Sport Health Sci. 2020, 11, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Nanbancha, A.; Tretriluxana, J.; Limroongreungrat, W.; Sinsurin, K. Decreased supraspinal control and neuromuscular function controlling the ankle joint in athletes with chronic ankle instability. Eur. J. Appl. Physiol. 2019, 119, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Kvien, T.K.; Heiberg, T.; Hagen, K.B. Minimal clinically important improvement/difference (MCII/MCID) and patient acceptable symptom state (PASS): What do these concepts mean? Ann. Rheum. Dis. 2007, 66, iii40–iii41. [Google Scholar] [CrossRef] [PubMed]
- Tapaninaho, K.; Uimonen, M.M.; Saarinen, A.J.; Repo, J.P. Minimal important change for foot and ankle outcome score (FAOS). Foot Ankle Surg. 2022, 28, 44–48. [Google Scholar] [CrossRef]
- Di Lorenzo, C.E. Pilates: What is it? Should it be used in rehabilitation? Sports Health 2011, 3, 352–361. [Google Scholar] [CrossRef] [PubMed]
PT | BT | |
---|---|---|
1–2 weeks | Abdominal prep, 10 reps | Balance equipment: None (floor) |
Rolling like a ball, 10 reps | Tandem stance, 30 s × 5 sets | |
Hundred, 1 set | Single leg balance, 30 s × 5 sets | |
Roll up, 5 reps | Single leg swings (sagittal plane), 20 reps × 3 sets | |
Single leg stretch, 5 reps in each leg | Single leg swings (frontal plane), 20 reps × 3 sets | |
Single leg circle, 5 reps in each leg | Standing single leg circle, 20 reps × 3 sets | |
Shoulder bridge prep, 10 reps | Single leg squat, 20 reps × 3 sets | |
Swimming prep, 10 reps | Single leg deadlift, 20 reps × 3 sets | |
3–4 weeks | Abdominal prep, 10 reps | Balance equipment: None (floor) |
Rolling like a ball, 10 reps | Tandem stance, 60 s × 3 sets | |
Hundred, 1 set | Single leg balance, 60 s × 3 sets | |
Roll up, 10 reps | Single leg swings (sagittal plane), 30 reps × 3 sets | |
Single leg stretch, 10 reps in each leg | Single leg swings (frontal plane), 30 reps × 3 sets | |
Single leg circle, 10 reps in each leg | Standing single leg circle, 30 reps × 3 sets | |
Shoulder bridge prep, 20 reps | Single leg squat, 30 reps × 3 sets | |
Swimming prep, 20 reps | Single leg deadlift, 30 reps × 3 sets | |
5 weeks | Abdominal prep, 10 reps | Balance equipment: BOSU (plat side) |
Rolling like a ball, 10 reps | Tandem stance, 60 s × 3 sets | |
Hundred, 1 set | Single leg balance, 60 s × 3 sets | |
Roll over, 5 reps | Single leg swings (sagittal plane), 30 reps × 3 sets | |
Double leg stretch, 5 reps | Single leg swings (frontal plane), 30 reps × 3 sets | |
Double leg circle, 5 reps | Standing single leg circle, 30 reps × 3 sets | |
Shoulder bridge, 5 reps in each leg | Single leg squat, 30 reps × 3 sets | |
Swimming, 50 reps | Single leg deadlift, 30 reps × 3 sets | |
6 weeks | Abdominal prep, 10 reps | Balance equipment: BOSU (dome side) |
Rolling like a ball, 10 reps | Tandem stance, 60 s × 3 sets | |
Hundred, 1 set | Single leg balance, 60 s × 3 sets | |
Roll over, 10 reps | Single leg swings (sagittal plane), 30 reps × 3 sets | |
Double leg stretch, 10 reps | Single leg swings (frontal plane), 30 reps × 3 sets | |
Double leg circle, 10 reps | Standing single leg circle, 30 reps × 3 sets | |
Shoulder bridge, 10 reps in each leg | Single leg squat, 30 reps × 3 sets | |
Swimming, 100 reps | Single leg deadlift, 30 reps × 3 sets |
Variables | PT (n = 26) | BT (n = 25) | p-Value |
---|---|---|---|
Age, years | 21.8 ± 1.6 | 22.5 ± 1.5 | 0.407 |
Height, cm | 176.1 ± 4.5 | 176.9 ± 4.6 | 0.484 |
Weight, kg | 69.1 ± 3.9 | 68.7 ± 3.5 | 0.824 |
BMI, kg/m2 | 22.3 ± 1.3 | 21.9 ± 1.5 | 0.537 |
LAS or giving way in the last week, n | 1.3 ± 0.3 | 1.7 ± 0.5 | 0.256 |
LSA or giving way in the last month, n | 3.9 ± 1.2 | 4.3 ± 1.0 | 0.435 |
Isokinetic Strength Values | LSI (%) | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Group | Pre | Post | p-Values | Time × Group p-Values | Pre | Post | p-Values |
Inversion, Nm | PT | 42.2 ± 11.4 | 45.5 ± 18.4 | 0.513 | 0.247 | 90.5 | 92.2 | 0.419 |
BT | 45.9 ± 11.9 | 46.4 ± 16.3 | 0.312 | 89.3 | 90.7 | 0.598 | ||
Eversion, Nm | PT | 22.3 ± 8.0 | 42.3 ± 14.5 | 0.029 | 0.339 | 57.9 | 88.2 | <0.001 |
BT | 20.3 ± 9.3 | 49.2 ± 12.1 | 0.012 | 54.7 | 85.7 | <0.001 | ||
Plantarflexion, Nm | PT | 106.2 ± 21.0 | 112.1 ± 21.8 | 0.210 | 0.470 | 90.8 | 93.7 | 0.468 |
BT | 98.8 ± 18.8 | 109.9 ± 23.6 | 0.249 | 91.6 | 92.6 | 0.513 | ||
Dorsiflexion, Nm | PT | 21.2 ± 9.7 | 33.6 ± 5.9 | 0.014 | 0.321 | 63.9 | 87.1 | <0.001 |
BT | 20.8 ± 9.1 | 35.2 ± 6.0 | 0.019 | 66.1 | 86.4 | <0.001 |
Single Hop Tests Values | LSI (%) | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Group | Pre | Post | p-Values | Time × Group p-Values | Pre | Post | p-Value |
Single, cm | PT | 119.3 ± 19.0 | 157.0 ± 14.8 | <0.001 | 0.415 | 78.7 | 90.2 | 0.005 |
BT | 123.3 ± 18.2 | 148.3 ± 16.3 | <0.001 | 82.5 | 87.6 | 0.009 | ||
Triple, cm | PT | 418.7 ± 43.0 | 461.9 ± 41.8 | 0.009 | 0.017 | 83.3 | 93.4 | <0.001 |
BT | 409.1 ± 41.5 | 438.0 ± 42.7 | 0.041 | 79.6 | 87.1 | 0.004 | ||
Crossover, cm | PT | 390.1 ± 37.1 | 433.1 ± 39.1 | 0.007 | 0.233 | 75.4 | 86.3 | 0.007 |
BT | 388.1 ± 39.4 | 442.0 ± 38.3 | 0.015 | 80.9 | 88.9 | 0.008 | ||
6-m hop, s | PT | 2.77 ± 0.15 | 2.12 ± 0.14 | <0.001 | 0.462 | 72.3 | 91.2 | <0.001 |
BT | 2.60 ± 0.13 | 2.09 ± 0.13 | <0.001 | 74.2 | 92.7 | <0.001 |
Dynamic Balance Values | LSI (%) | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Group | Pre | Post | p-Values | Time × Group p-Values | Pre | Post | p-Values |
Anterior, cm | PT | 51.7 ± 14.3 | 68.2 ± 16.0 | 0.046 | 0.246 | 76.8 | 89.0 | <0.001 |
BT | 52.0 ± 15.9 | 65.4 ± 17.8 | 0.037 | 78.2 | 90.2 | <0.001 | ||
Posteromedial, cm | PT | 61.5 ± 21.1 | 73.3 ± 19.0 | 0.014 | 0.015 | 79.9 | 86.6 | 0.005 |
BT | 64.1 ± 19.4 | 82.2 ± 20.2 | 0.015 | 82.1 | 92.4 | <0.001 | ||
Posterolateral, cm | PT | 63.3 ± 27.3 | 71.8 ± 20.8 | 0.041 | 0.008 | 81.3 | 87.1 | 0.006 |
BT | 62.4 ± 28.2 | 81.2 ± 23.1 | 0.027 | 80.5 | 91.4 | <0.001 |
Variables | Group | Pre | Post | p-Values | Time × Group p-Values |
---|---|---|---|---|---|
Pain | PT | 74.0 ± 18.4 | 88.4 ± 8.5 | 0.005 | 0.417 |
BT | 77.6 ± 24.1 | 89.8 ± 9.7 | 0.004 | ||
Symptoms | PT | 72.1 ± 19.6 | 92.7 ± 6.6 | <0.001 | 0.356 |
BT | 70.1 ± 18.4 | 95.3 ± 4.1 | 0.009 | ||
ADL | PT | 76.9 ± 15.1 | 89.6 ± 9.6 | 0.007 | 0.507 |
BT | 71.2 ± 16.3 | 89.3 ± 8.4 | 0.004 | ||
Sports and recreation | PT | 65.7 ± 21.8 | 88.1 ± 7.0 | <0.001 | 0.348 |
BT | 60.6 ± 17.5 | 90.7 ± 7.4 | <0.001 | ||
QoL | PT | 69.5 ± 14.6 | 88.5 ± 8.1 | 0.008 | 0.271 |
BT | 71.3 ± 16.7 | 85.2 ± 9.9 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Kim, Y.; Choi, M. Kinetic Effects of 6 Weeks’ Pilates or Balance Training in College Soccer Players with Chronic Ankle Instability. Int. J. Environ. Res. Public Health 2022, 19, 12903. https://doi.org/10.3390/ijerph191912903
Jiang Q, Kim Y, Choi M. Kinetic Effects of 6 Weeks’ Pilates or Balance Training in College Soccer Players with Chronic Ankle Instability. International Journal of Environmental Research and Public Health. 2022; 19(19):12903. https://doi.org/10.3390/ijerph191912903
Chicago/Turabian StyleJiang, Quan, Yonghwan Kim, and Moonyoung Choi. 2022. "Kinetic Effects of 6 Weeks’ Pilates or Balance Training in College Soccer Players with Chronic Ankle Instability" International Journal of Environmental Research and Public Health 19, no. 19: 12903. https://doi.org/10.3390/ijerph191912903
APA StyleJiang, Q., Kim, Y., & Choi, M. (2022). Kinetic Effects of 6 Weeks’ Pilates or Balance Training in College Soccer Players with Chronic Ankle Instability. International Journal of Environmental Research and Public Health, 19(19), 12903. https://doi.org/10.3390/ijerph191912903