Relationship between a Maximum Plank Assessment and Fitness, Health Behaviors, and Moods in Tactical Athletes: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Questionnaires
2.4.1. Energy and Fatigue
2.4.2. Grit
2.4.3. Diet
2.4.4. Sleep
2.4.5. Physical Activity
2.5. Anthropometric Measures
2.6. Movement Assessments
2.6.1. Wall Sit and Reach
2.6.2. Y-Balance Test
2.6.3. Overhead Squat and Shoulder Mobility
2.7. Fitness Testing
2.7.1. Countermovement Jump
2.7.2. Upper Extremity Muscular Fitness Testing
2.7.3. Prone Forearm Plank
2.7.4. Maximal Oxygen Consumption
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Plank and Body Composition
4.2. Plank and Fitness Assessments
4.3. Plank & Mobility/Balance
4.4. Plank & Health Behaviors
4.5. Limitations & Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scofield, D.E.; Kardouni, J.R. The Tactical Athlete: A Product of 21st Century Strength and Conditioning. Strength Cond. J. 2015, 37, 2–7. [Google Scholar] [CrossRef]
- Rhea, M.R. Needs Analysis and Program Design for Police Officers. Strength Cond. J. 2015, 37, 30–34. [Google Scholar] [CrossRef]
- Knapik, J.J.; East, W.B. History of United States Army Physical Fitness and Physical Readiness Training. US Army Med. Dep. J. 2014, 5–19. [Google Scholar]
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical Fitness Characteristics That Relate to Work Sample Test Battery Performance in Law Enforcement Recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [Green Version]
- Nindl, B.C.; Alvar, B.A.; Dudley, J.R.; Favre, M.W.; Martin, G.J.; Sharp, M.A.; Warr, B.J.; Stephenson, M.D.; Kraemer, W.J. Executive Summary From the National Strength and Conditioning Association’s Second Blue Ribbon Panel on Military Physical Readiness: Military Physical Performance Testing. J. Strength Cond. Res. 2015, 29 (Suppl. 11), S216–S220. [Google Scholar] [CrossRef]
- ATP 7-22.01; Holistic Health and Fitness Drills and Exercises. Department of the Army: Arlington, VA, USA, 2020.
- Hardison, C.M.; Mayberry, P.W.; Krull, H.; Setodji, C.M.; Panis, C.; Madison, R.; Simpson, M.; Avriette, M.; Totten, M.E.; Wong, J. Independent Review of the Army Combat Fitness Test: Summary of Key Findings and Recommendations; RAND Corporation: Santa Monica, CA, USA, 2022. [Google Scholar]
- Hauschild, V.D.; DeGroot, D.W.; Hall, S.M.; Grier, T.L.; Deaver, K.D.; Hauret, K.G.; Jones, B.H. Fitness Tests and Occupational Tasks of Military Interest: A Systematic Review of Correlations. Occup. Environ. Med. 2017, 74, 144–153. [Google Scholar] [CrossRef]
- Hydren, J.R.; Borges, A.S.; Sharp, M.A. Systematic Review and Meta-Analysis of Predictors of Military Task Performance: Maximal Lift Capacity. J. Strength Cond. Res. 2017, 31, 1142–1164. [Google Scholar] [CrossRef]
- Nourizadeh, S.; Mirjani, M.; Naserpour, H. The Relationship Between Core Stability, Muscular Endurance, and Static Balance, and Shooting Function in Military Soldiers. J. Sport Biomech. 2019, 5, 62–71. [Google Scholar] [CrossRef]
- Stocker, H.; Leo, P. Predicting Military Specific Performance From Common Fitness Tests. J. Phys. Educ. Sport 2020, 20, 2454–2459. [Google Scholar] [CrossRef]
- Abdelraouf, O.R.; Abdel-Aziem, A.A. The Relationship between Core Endurance and Back Dysfunction in Collegiate Male Athletes with and without Nonspecific Low Back Pain. Int. J. Sports Phys. Ther. 2016, 11, 337–344. [Google Scholar]
- Knox, J.; Orchowski, J.; Scher, D.L.; Owens, B.D.; Burks, R.; Belmont, P.J. The Incidence of Low Back Pain in Active Duty United States Military Service Members. Spine 2011, 36, 1492–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyamina Douma, N.; Côté, C.; Lacasse, A. Quebec Serve and Protect Low Back Pain Study: A Web-Based Cross-Sectional Investigation of Prevalence and Functional Impact Among Police Officers. Spine 2017, 42, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Seo, J.; Kim, K.; Ahn, Y.-S. Nationwide Firefighter Survey: The Prevalence of Lower Back Pain and Its Related Psychological Factors among Korean Firefighters. Int. J. Occup. Saf. Ergon. 2017, 23, 447–456. [Google Scholar] [CrossRef] [PubMed]
- McGill, S.M. The Mechanics of Torso Flexion: Situps and Standing Dynamic Flexion Manoeuvres. Clin. Biomech. 1995, 10, 184–192. [Google Scholar] [CrossRef]
- Jackson, A.W.; Morrow, J.R.; Brill, P.A.; Kohl, H.W.; Gordon, N.F.; Blair, S.N. Relations of Sit-up and Sit-and-Reach Tests to Low Back Pain in Adults. J. Orthop. Sports Phys. Ther. 1998, 27, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Alok, M. Effectiveness of Plank Exercise in Low Back Pain. Int. J. Sci. Res. 2018, 9, 5. [Google Scholar]
- Williams, J.; Ramsey, V. The Need for Law Enforcement Wellness Interventions: A Critical Review. Sport J. 2017. Available online: https://thesportjournal.org/article/the-need-for-law-enforcement-wellness-interventions/ (accessed on 21 September 2022).
- Romero, M.; Alvar, B. A New Model for Optimizing Firefighter Human Performance. Strength Cond. J. 2021, 43, 19–31. [Google Scholar] [CrossRef]
- Nindl, B.C.; Jaffin, D.P.; Dretsch, M.N.; Cheuvront, S.N.; Wesensten, N.J.; Kent, M.L.; Grunberg, N.E.; Pierce, J.R.; Barry, E.S.; Scott, J.M.; et al. Human Performance Optimization Metrics: Consensus Findings, Gaps, and Recommendations for Future Research. J. Strength Cond. Res. 2015, 29 (Suppl. 11), S221–S245. [Google Scholar] [CrossRef]
- Deuster, P.A.; O’Connor, F.G. Human Performance Optimization: Culture Change and Paradigm Shift. J. Strength Cond. Res. 2015, 29 (Suppl. 11), S52–S56. [Google Scholar] [CrossRef] [PubMed]
- Wickham, S.-R.; Amarasekara, N.A.; Bartonicek, A.; Conner, T.S. The Big Three Health Behaviors and Mental Health and Well-Being Among Young Adults: A Cross-Sectional Investigation of Sleep, Exercise, and Diet. Front. Psychol. 2020, 11, 579205. [Google Scholar] [CrossRef]
- Knapik, J.J.; Farina, E.K.; Fulgoni, V.L.; Lieberman, H.R. Clinically-Diagnosed Vitamin Deficiencies and Disorders in the Entire United States Military Population, 1997–2015. Nutr. J. 2021, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Lentino, C.; Purvis, D.L.; Murphy, K.; Deuster, P.A. Sleep as a Component of the Performance Triad: The Importance of Sleep in a Military Population. US Army Med. Dep. J. 2013, 98–108. [Google Scholar]
- Kowalski, K.L.; Boolani, A.; Christie, A.D. State and Trait Fatigue and Energy Predictors of Postural Control and Gait. Motor Control 2021, 25, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Tharion, W.; Karis, A.; Potter, A. Mood States of US Army Ranger Students Associated with a Competitive Road March. J. Sport Hum. Perform. 2013, 1, 1–9. [Google Scholar] [CrossRef]
- Totosy de Zepetnek, J.O.; Martin, J.; Cortes, N.; Caswell, S.; Boolani, A. Influence of Grit on Lifestyle Factors During the COVID-19 Pandemic in a Sample of Adults in the United States. Personal. Individ. Differ. 2021, 175, 110705. [Google Scholar] [CrossRef]
- Eskreis-Winkler, L.; Shulman, E.P.; Beal, S.A.; Duckworth, A.L. The Grit Effect: Predicting Retention in the Military, the Workplace, School and Marriage. Front. Psychol. 2014, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Buller, E.F. The Relationship between Grit and Academic, Military and Physical Performance at the United States Military Academy. Doctoral Thesis, University of Kansas, Lawrence, KS, USA, 2012. [Google Scholar]
- Navalta, J.W.; Stone, W.J.; Lyons, T.S. Ethical Issues Relating to Scientific Discovery in Exercise Science. Int. J. Exerc. Sci. 2019, 12, 1–8. [Google Scholar]
- Boolani, A.; O’Connor, P.; Reed, J.; Ma, S.; Mondal, S. Predictors of Feelings of Energy Differ from Predictors of Fatigue among Graduate Health Sciences Students. FASEB J. 2019, 33, 534.8. [Google Scholar] [CrossRef]
- O’Connor, P.J. Evaluation of Four Highly Cited Energy and Fatigue Mood Measures. J. Psychosom. Res. 2004, 57, 435–441. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Peterson, C.; Matthews, M.D.; Kelly, D.R. Grit: Perseverance and Passion for Long-Term Goals. J. Pers. Soc. Psychol. 2007, 92, 1087–1101. [Google Scholar] [CrossRef]
- Gans, K.M.; Risica, P.M.; Wylie-Rosett, J.; Ross, E.M.; Strolla, L.O.; McMurray, J.; Eaton, C.B. Development and Evaluation of the Nutrition Component of the Rapid Eating and Activity Assessment for Patients (REAP): A New Tool for Primary Care Providers. J. Nutr. Educ. Behav. 2006, 38, 286–292. [Google Scholar] [CrossRef]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh Sleep Quality Index as a Screening Tool for Sleep Dysfunction in Clinical and Non-Clinical Samples: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef]
- Dinger, M.K.; Behrens, T.K.; Han, J.L. Validity and Reliability of the International Physical Activity Questionnaire in College Students. Am. J. Health Educ. 2006, 37, 337–343. [Google Scholar] [CrossRef]
- Murphy, J.J.; Murphy, M.H.; MacDonncha, C.; Murphy, N.; Nevill, A.M.; Woods, C.B. Validity and Reliability of Three Self-Report Instruments for Assessing Attainment of Physical Activity Guidelines in University Students. Meas. Phys. Educ. Exerc. Sci. 2017, 21, 134–141. [Google Scholar] [CrossRef]
- Davis, J.A.; Dorado, S.; Keays, K.A.; Reigel, K.A.; Valencia, K.S.; Pham, P.H. Reliability and Validity of the Lung Volume Measurement Made by the BOD POD Body Composition System. Clin. Physiol. Funct. Imaging 2007, 27, 42–46. [Google Scholar] [CrossRef]
- Liemohn, W.; Sharpe, G.; Wasserman, J. Criterion Related Validity of the Sit-and-Reach Test. J. Strength Cond. Res. 1994, 8, 91–94. [Google Scholar]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Absolute Reliability of Five Clinical Tests for Assessing Hamstring Flexibility in Professional Futsal Players. J. Sci. Med. Sport 2012, 15, 142–147. [Google Scholar] [CrossRef]
- Wright, A.A.; Dischiavi, S.L.; Smoliga, J.M.; Taylor, J.B.; Hegedus, E.J. Association of Lower Quarter Y-Balance Test with Lower Extremity Injury in NCAA Division 1 Athletes: An Independent Validation Study. Physiotherapy 2017, 103, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Plisky, P.; Schwartkopf-Phifer, K.; Huebner, B.; Garner, M.B.; Bullock, G. Systematic Review and Meta-Analysis of the Y-Balance Test Lower Quarter: Reliability, Discriminant Validity, and Predictive Validity. Int. J. Sports Phys. Ther. 2021, 16, 1190–1209. [Google Scholar] [CrossRef] [PubMed]
- Cook, G. Movement: Functional Movement Systems: Screening, Assessment, Corrective Strategies, 1st ed.; On Target Publications: Aptos, CA, USA, 2010. [Google Scholar]
- Bonazza, N.A.; Smuin, D.; Onks, C.A.; Silvis, M.L.; Dhawan, A. Reliability, Validity, and Injury Predictive Value of the Functional Movement Screen: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2017, 45, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of Two Alternative Systems for Measuring Vertical Jump Height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Burke, A.; Fyock-Martin, M.B.; Martin, J. What Factors Predict Upper Body Push to Pull Ratios in Professional Firefighters? Int. J. Exerc. Sci. 2020, 13, 1605–1614. [Google Scholar] [PubMed]
- Tong, T.K.; Wu, S.; Nie, J. Sport-Specific Endurance Plank Test for Evaluation of Global Core Muscle Function. Phys. Ther. Sport 2014, 15, 58–63. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Barr, D.; Boland, D.M.; Smith, D.L.; Cooper, C.B. Validation of the Firefighter WFI Treadmill Protocol for Predicting VO2 Max. Occup. Med. 2015, 65, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Army Combat Fitness Test Scoring Scales; Department of the Army: Arlington, VA, USA, 2022.
- Willson, V.L. Critical Values of the Rank-Biserial Correlation Coefficient. Educ. Psychol. Meas. 1976, 36, 297–300. [Google Scholar] [CrossRef]
- Reyes-Guzman, C.M.; Bray, R.M.; Forman-Hoffman, V.L.; Williams, J. Overweight and Obesity Trends among Active Duty Military Personnel: A 13-Year Perspective. Am. J. Prev. Med. 2015, 48, 145–153. [Google Scholar] [CrossRef]
- Mayer, J.M.; Nuzzo, J.L.; Chen, R.; Quillen, W.S.; Verna, J.L.; Miro, R.; Dagenais, S. The Impact of Obesity on Back and Core Muscular Endurance in Firefighters. J. Obes. 2012, 2012, 729283. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Mokha, M. Does Core Strength Training Influence Kinetic Efficiency, Lower Extremity Stability, and 5000 m Performance in Runners? J. Strength Cond. Res. 2009, 23, 133–140. [Google Scholar] [CrossRef]
- Multani, G.; Sutar, A.; Nikhade, N.; Ghodey, S. Effect of Core Strengthening on Cardiovascular Fitness and Flexibility in Obese Individuals: Experimental Study. Int. J. Community Med. Public Health 2019, 6, 2235–2240. [Google Scholar] [CrossRef]
- Cesario, K.A.; Dulla, J.M.; Moreno, M.R.; Dawes, J.J.; Lockie, R.G. Relationships Between Assessments in a Physical Ability Test for Law Enforcement: Is There Redundancy in Certain Assessments? Int. J. Exerc. Sci. 2018, 11, 1063–1073. [Google Scholar]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core Stability and Its Relationship to Lower Extremity Function and Injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Cosio-Lima, L.; Knapik, J.J.; Shumway, R.; Reynolds, K.; Lee, Y.; Greska, E.; Hampton, M. Associations Between Functional Movement Screening, the Y Balance Test, and Injuries in Coast Guard Training. Mil. Med. 2016, 181, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Cornell, D.J.; Gnacinski, S.L.; Zamzow, A.; Mims, J.; Ebersole, K.T. Measures of Health, Fitness, and Functional Movement among Firefighter Recruits. Int. J. Occup. Saf. Ergon. 2017, 23, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Soltandoost Nari, S.M.; Shamsoddini, A. Relationships between Functional Movement Screen and Pain, Dynamic Balance, and Trunk Muscle Endurance in Military Personnel with Non-Specific Chronic Low Back Pain. PTJ 2020, 10, 221–230. [Google Scholar] [CrossRef]
- Okada, T.; Huxel, K.C.; Nesser, T.W. Relationship between Core Stability, Functional Movement, and Performance. J. Strength Cond. Res. 2011, 25, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Estep, A.; Tozcko, M.; Hartzel, B.; Boolani, A. Relationships between Grit and Lifestyle Factors in Undergraduate College Students during the COVID-19 Pandemic. J. Am. Coll. Health 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- 2020 Demographics Profile of the Military Community; Department of Defense: Arlington, VA, USA, 2020.
- Allison, K.F.; Keenan, K.A.; Sell, T.C.; Abt, J.P.; Nagai, T.; Deluzio, J.; McGrail, M.; Lephart, S.M. Musculoskeletal, Biomechanical, and Physiological Gender Differences in the US Military. US Army Med. Dep. J. 2015, 22–32. [Google Scholar]
- Hauschild, V.; DeGroot, D.; Hall, S.; Deaver, K.; Hauret, K.; Grier, T.; Jones, B. Correlations between Physical Fitness Tests and Performance of Military Tasks: A Systematic Review and Meta-Analyses; Defense Technical Information Center: Fort Belvoir, VA, USA, 2014.
- Mirizio, G.G.; Nunes, R.S.M.; Vargas, D.A.; Foster, C.; Vieira, E. Time-of-Day Effects on Short-Duration Maximal Exercise Performance. Sci. Rep. 2020, 10, 9485. [Google Scholar] [CrossRef]
- Burke, S.; Carron, A.; Eys, M.; Ntoumanis, N.; Estabrooks, P. Group versus Individual Approach? A Meta-Analysis of the Effectiveness of Interventions to Promote Physical Activity. Sport Exerc. Psychol. Rev. 2005, 2, 19–35. [Google Scholar]
Variables | Total: Mean (SD) | Pass: Mean (SD) | Pass: (Min, Max) | Fail: Mean (SD) | Fail: (Min, Max) | Effect Size (rg) | p-Value |
---|---|---|---|---|---|---|---|
Demographics and Anthropometrics (Total: n = 49, Pass: n = 41, Fail: n = 8) | |||||||
Age | 38.39 (7.78) | 38.88 (7.46) | (23.00, 25.00) | 35.00 (9.07) | (23.00, 50.00) | 0.250 | 0.272 |
Years of Service | 11.98 (8.31) | 11.81 (8.07) | (0.00, 30.00) | 11.44 (9.66) | (1.50, 26.00) | 0.061 | 0.796 |
Height (cm) | 176.35 (8.02) | 175.53 (8.06) | (158.00, 194.50) | 179.59 (7.56) | (168.00, 190.00) | 0.259 | 0.256 |
Mass (kg) | 84.42 (15.13) | 82.10 (12.25) | (47.78, 102.60) | 95.60 (23.65) | (61.70, 139.9) | 0.409 | 0.072 |
Body Fat (%) | 23.12 (7.03) | 22.45 (6.69) | (7.50, 35.20) | 26.69 (8.52) | (15.20, 40.8) | 0.256 | 0.261 |
Fat Free Mass (kg) | 65.95 (11.26) | 64.47 (10.90) | (39.19, 92.50) | 72.93 (11.75) | (51.88, 87.94) | 0.384 | 0.091 |
Fat Mass (kg) | 19.99 (8.24) | 18.71 (6.10) | (5.10, 32.30) | 26.53 (14.13) | (11.30, 57.00) | 0.402 | 0.076 |
BMI | 27.01 (3.83) | 26.54 (2.96) | (18.50, 32.79) | 29.48 (6.61) | (20.73, 43.66) | 0.335 | 0.140 |
Movement (Total: n = 49, Pass: n = 41, Fail: n = 8) | |||||||
WSR (cm) | 30.96 (9.57) | 30.18 (9.25) | (14.5, 50.50) | 35.19 (11.25) | (22.00, 58.00) | 0.256 | 0.261 |
YBTA (cm) | 3.52 (2.88) | 3.61 (3.04) | (0.00, 13.00) | 2.75 (1.91) | (1.00, 6.00) | 0.155 | 0.495 |
Overhead Squat | 1.67 (0.63) | 1.73 (0.60) | (0.00, 3.00) | 1.38 (0.74) | (0.00, 2.00) | 0.256 | 0.187 |
SMR (cm) | 25.67 (12.01) | 25.04 (10.33) | (0.00, 53.00) | 28.38 (19.54) | (0.00, 68.00) | 0.009 | 0.978 |
SML (cm) | 28.04 (12.53 | 27.70 (11.11) | (0.00, 55.00) | 29.12 (19.61) | (0.00, 66.00) | 0.012 | 0.967 |
Fitness (Total: n = 49, Pass: n = 41, Fail: n = 8) | |||||||
Vertical Jump (in) | 21.38 (4.15) | 21.47 (4.03) | (13.80, 29.60) | 21.16 (5.19) | (15.00, 28.70) | 0.064 | 0.786 |
1RM BP (kg) | 98.11 (26.95) | 98.84 (25.85) | (20.41, 145.45) | 92.27 (34.24) | (38.50, 127.01) | 0.092 | 0.686 |
Pull up (reps) | 8.57 (6.02) | 9.07 (5.92) | (0.00, 21.00) | 5.88 (6.58) | (0.00, 15.00) | 0.290 | 0.202 |
Push up (reps) | 38.06 (19.17) | 39.50 (18.66) | (5.00, 105.00) | 29.38 (21.49) | (6.00, 60.00) | 0.271 | 0.233 |
Plank Hold (s) | 109.21 (42.99) | 115.19 (35.28) | (72.00, 249.00) | 61.80 (13.09) | (36.00, 78.00) | 0.948 | <0.001 *** |
VO2max (mL·kg−1·min−1) | 44.71 (5.11) | 45.78 (4.75) | (35.90, 58.50) | 39.48 (3.92) | (34.2, 44.09) | 0.695 | 0.002 ** |
Lifestyle Behaviors (Total: n = 18, Pass: n = 16, Fail: n = 2) | |||||||
Grit | 3.87 (0.46) | 3.84 (0.48) | (3.00, 5.00) | 4.06 (0.27) | (3.87, 4.25) | 0.344 | 0.478 |
REAPS | 29.39 (3.15) | 29.25 (3.28) | (25.00, 35.00) | 30.50 (2.12) | (29.00, 32.00) | 0.250 | 0.620 |
PSQI | 4.83 (1.86) | 4.94 (1.95) | (3.00, 11.00) | 4.00 (0.00) | (4.00, 4.00) | 0.312 | 0.498 |
VPA (min/wk) | 247.22 (143.86) | 261.25 (141.76) | (40.00, 540.00) | 135.00 (148.49) | (30.00, 240.00) | 0.500 | 0.289 |
MPA (min/wk) | 202.78 (219.73) | 194.38 (230.13) | (0.00, 720.00) | 270.00 (127.28) | (180.00, 360.00) | 0.406 | 0.397 |
LPA (min/wk) | 320.83 (425.39) | 307.19 (425.30) | (0.00, 1680.00) | 430.00 (579.83) | (20.00, 840.00) | 0.031 | 1.000 |
Sitting (min/wk) | 1908.33 (2455.85) | 2041.88 (2581.50) | (240.00, 10,500.00) | 840.00 (0.00) | (840.00, 840.00) | 0.063 | 0.944 |
Moods and Personality (Total: n = 18, Pass: n = 16, Fail: n = 2) | |||||||
Trait PE | 7.44 (2.71) | 7.56 (2.80) | (1.00, 12.00) | 6.50 (2.12) | (5.00, 8.00) | 0.344 | 0.476 |
Trait PF | 3.61 (2.06) | 3.31 (1.85) | (0.00, 6.00) | 6.00 (2.83) | (4.00, 8.00) | 0.656 | 0.154 |
Trait ME | 7.67 (2.25) | 7.75 (2.35) | (3.00, 12.00) | 7.00 (1.41) | (6.00, 8.00) | 0.219 | 0.667 |
Trait MF | 2.94 (1.98) | 2.88 (2.09) | (0.00, 6.00) | 3.50 (0.71) | (3.00, 4.00) | 0.281 | 0.554 |
State PE | 201.28 (62.43) | 205.00 (64.73) | (90.00, 300.00) | 171.50 (37.48) | (145.00, 198.00) | 0.375 | 0.439 |
State PF | 78.39 (63.86) | 76.75 (61.77) | (3.00, 220.00) | 91.50 (108.19) | (15.00, 168.00) | 0.063 | 0.944 |
State ME | 207.06 (61.80) | 208.25 (65.63) | (99.00, 300.00) | 197.50 (10.61) | (190.00, 205.00) | 0.000 | 1.000 |
State MF | 69.00 (66.54) | 67.88 (66.24) | (0.00, 253.00) | 78.00 (96.17) | (10.00, 146.00) | 0.063 | 0.944 |
Plank | Age | YOS | Height | Mass | BF | FFM | FM | BMI | WSR | YBTA | Squat | SMA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMA | 0.061 | −0.023 | −0.147 | −0.101 | −0.034 | 0.081 | −0.139 | 0.073 | 0.015 | −0.254 | 0.128 | 0.287 * | - |
Squat | 0.277 | −0.064 | 0.049 | 0.059 | −0.047 | −0.178 | −0.061 | −0.190 | −0.168 | −0.029 | 0.000 | - | |
YBTA | 0.190 | 0.128 | 0.019 | −0.046 | 0.014 | −0.030 | 0.056 | −0.017 | 0.047 | −0.001 | - | ||
WSR | −0.073 | −0.430 ** | −0.225 | −0.021 | −0.091 | −0.031 | −0.037 | −0.040 | −0.121 | - | |||
BMI | −0.351 * | 0.180 | 0.152 | 0.193 | 0.776 ** | 0.478 ** | 0.369 ** | 0.747 ** | - | ||||
FM | −0.379 ** | 0.146 | 0.073 | 0.132 | 0.569 ** | 0.882 ** | −0.019 | - | |||||
FFM | −0.246 | 0.051 | 0.153 | 0.650 ** | 0.645 ** | −0.374 ** | - | ||||||
BF | −0.267 | 0.107 | 0.020 | −0.198 | 0.191 | - | |||||||
Mass | −0.270 | 0.150 | 0.213 | 0.729 ** | - | ||||||||
Height | −0.072 | 0.055 | 0.121 | - | |||||||||
YOS | 0.102 | 0.748 ** | - | ||||||||||
Age | 0.207 | - | |||||||||||
Plank | - |
Plank | CMJ | Bench | Pull-Up | Push-Up | VO2max | |
---|---|---|---|---|---|---|
VO2max | 0.277 | 0.223 | 0.043 | 0.300 * | 0.142 | - |
Push | 0.287 * | 0.417 | 0.537 * | 0.724 ** | - | |
Pull | 0.139 | 0.613 ** | 0.499 | - | ||
Bench | 0.073 | 0.410 | - | |||
CMJ | −0.026 | - | ||||
Plank | - |
SPE | SPF | SME | SMF | Grit | REAPS | PSQI | Plank | |
---|---|---|---|---|---|---|---|---|
Plank | 0.609 * | 0.046 | 0.573 | −0.109 | −0.166 | 0.027 | −0.369 | - |
PSQI | −0.431 | 0.497 | −0.666 * | −0.532 | 0.107 | 0.111 | - | |
REAPS | −0.009 | −0.025 | −0.581 | 0.380 | 0.192 | - | ||
Grit | −0.285 | −0.297 | −0.386 | 0.115 | - | |||
SMF | −0.591 | 0.601 * | −0.491 | - | ||||
SME | 0.555 | 0.005 | - | |||||
SPF | −0.228 | - | ||||||
SPE | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sax van der Weyden, M.; Toczko, M.; Fyock-Martin, M.; Martin, J. Relationship between a Maximum Plank Assessment and Fitness, Health Behaviors, and Moods in Tactical Athletes: An Exploratory Study. Int. J. Environ. Res. Public Health 2022, 19, 12832. https://doi.org/10.3390/ijerph191912832
Sax van der Weyden M, Toczko M, Fyock-Martin M, Martin J. Relationship between a Maximum Plank Assessment and Fitness, Health Behaviors, and Moods in Tactical Athletes: An Exploratory Study. International Journal of Environmental Research and Public Health. 2022; 19(19):12832. https://doi.org/10.3390/ijerph191912832
Chicago/Turabian StyleSax van der Weyden, Megan, Michael Toczko, Marcie Fyock-Martin, and Joel Martin. 2022. "Relationship between a Maximum Plank Assessment and Fitness, Health Behaviors, and Moods in Tactical Athletes: An Exploratory Study" International Journal of Environmental Research and Public Health 19, no. 19: 12832. https://doi.org/10.3390/ijerph191912832
APA StyleSax van der Weyden, M., Toczko, M., Fyock-Martin, M., & Martin, J. (2022). Relationship between a Maximum Plank Assessment and Fitness, Health Behaviors, and Moods in Tactical Athletes: An Exploratory Study. International Journal of Environmental Research and Public Health, 19(19), 12832. https://doi.org/10.3390/ijerph191912832