Adapting Demirjian Standards for Portuguese and Spanish Children and Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Demirjian Method for Age Estimation
2.3. Ethics, Procedures, and Data Analysis
3. Results
3.1. Inter-Rater Reliability
3.2. Chronological Age Forecast from the Global Score and Tooth by Tooth
3.3. Predictive Capacities According to Age Group
3.4. Chronological Age Forecast from Tooth-by-Tooth Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
B | Unstandardized regression coefficient |
β | Standardized coefficient |
C | Chronological |
D | Demirjian |
F | F-test |
M | Mean |
p | Significance level |
R | Linear regression coefficient |
R2 | R Squared (coefficient of determination) |
SD | Standard-deviation |
SE B | Standard-error for unstandardized coefficient |
SE | Standard-error |
References
- Marroquin, T.Y.; Karkhanis, S.; Kvaal, S.I.; Vasudavan, S.; Kruger, E.; Tennant, M. Age estimation in adults by dental imaging assessment systematic review. Forensic Sci. Int. 2017, 275, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.; Ata-Ali, F.; Ata-Ali, J.; Gonzalez, J.; Cobo, T. Demirjian and Cameriere methods for age estimation in a Spanish sample of 1386 living subjects. Sci. Rep. 2022, 12, 2838. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.K.; Hackman, L.; Dahal, S. Dental Age Assessment using Demirjian’s Eight Teeth Method and Willems Method in a Tertiary Hospital. J. Nepal. Med. Assoc. 2018, 56, 912–916. [Google Scholar] [CrossRef]
- Balla, S.B.; Baghirath, P.V.; Vinay, B.H.; Kumar, J.V.; Babu, D.G. Accuracy of methods of age estimation in predicting dental age of preadolescents in South Indian children. J. Forensic Leg. Med. 2016, 43, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.; Jain, V. Comprehensive Chart for Dental Age Estimation (DAEcc8) based on Demirjian 8-teeth method: Simplified for operator ease. J. Forensic Leg. Med. 2018, 59, 45–49. [Google Scholar] [CrossRef]
- Lucas, V.S.; Andiappan, M.; McDonald, F.; Roberts, G. Dental age estimation: A test of the reliability of correctly identifying a subject over 18 years of age using the gold standard of chronological age as the comparator. J. Forensic Sci. 2016, 61, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Tomás, L.F.; Mónico, L.S.; Tomás, I.; Varela-Patiño, P.; Martin-Biedma, B. The accuracy of estimating chronological age from Demirjian and Nolla methods in a Portuguese and Spanish sample. BMC Oral Health 2014, 14, 160–175. [Google Scholar] [CrossRef]
- Angelakopoulos, N.; Franco, A.; Willems, G.; Fieuws, S.; Thevissen, P. Clinically detectable dental identifiers observed in intra-oral photographs and extra-oral radiographs, validated for human identification Purposes. J. Forensic Sci. 2016, 62, 900–906. [Google Scholar] [CrossRef]
- Cameriere, R.; De Luca, S.; Egidi, N.; Bacaloni, M.; Maponi, P.; Ferrante, L.; Cingolani, M. Automatic age estimation in adults by analysis of canine pulp/tooth ratio: Preliminary results. J. Forensic Radiol. Imaging 2015, 3, 61–66. [Google Scholar] [CrossRef]
- Kahaki, S.M.M.; Ismail, W.; Nordin, M.J.; Ahmad, N.S.; Ahmad, M. Automated age estimation based on geometric mean projection transform using Orthopantomographs. J. Adv. Technol. Eng. Stud. 2017, 3, 6–10. [Google Scholar] [CrossRef]
- Lucas, V.S.; McDonald, F.; Andiappan, M.; Roberts, G. Dental age estimation: Periodontal ligament visibility (PLV)—Pattern recognition of a conclusive mandibular maturity marker related to the lower left third molar at the 18-year threshold. Int. J. Leg. Med. 2017, 131, 797–801. [Google Scholar] [CrossRef]
- Penaloza, T.Y.M.; Karkhanis, S.; Kvaal, S.I.; Nurul, F.; Kanagasingam, S.; Franklin, D.; Tennant, M. Application of the Kvaal method for adult dental age estimation using Cone Beam Computed Tomography (CBCT). J. Forensic Leg. Med. 2016, 44, 178–182. [Google Scholar] [CrossRef]
- Bagherpour, A.; Imanimoghaddam, M.; Bagherpour, M.R.; Einolghozati, M. Dental age assessment among Iranian children aged 6–13 years using the Demirjian method. Forensic Sci. Int. 2010, 7, 121.e1–121.e4. [Google Scholar]
- Djukic, K.; Zelic, K.; Milenkovic, P.; Nedeljovic, N.; Djuric, M. Dental age assessment validity of radiographic methods on Serbian children population. Forensic Sci. Int. 2013, 231, 398.e1–398.e5. [Google Scholar]
- Kirzioglu, Z.; Ceyhan, D. Accuracy of different dental age estimation methods on Turkish children. Forensic Sci. Int. 2012, 216, 61–67. [Google Scholar]
- Flood, S.J.; Franklin, D.; Turlach, B.A.; McGeachie, J.A. comparison of Demirjian’s four dental development methods for forensic age estimation in South Australian sub-adults. J. Forensic Leg. Med. 2013, 20, 875–883. [Google Scholar]
- Jayaraman, J.; Wong, H.M.; King, N.M.; Roberts, G.J. Development of a Reference Data Set (RDS) for dental age estimation (DAE) and testing of this with a separate Validation Set (VS) in a southern Chinese population. J. Forensic Leg. Med. 2016, 43, 26–33. [Google Scholar] [CrossRef]
- Jayaraman, J.; Wong, H.M.; King, N.M.; Roberts, G.J. The French-Canadian data set of Demirjian for dental age estimation: A systematic review and meta-analysis. Forensic Sci. Int. 2013, 20, 373–381. [Google Scholar]
- Kelmendi, J.; Mehmeti, B.; Vodanović, M.; Koçani, F.; Bimbashi, V.; Galić, I. Dental age estimation using four Demirjian’s, Chaillet’s and Willems’ methods in Kosovar children. Leg. Med. 2018, 33, 23–31. [Google Scholar] [CrossRef]
- Nik-Hussein, N.N.; Kee, K.M.; Gan, P. Validity of Femirjian and Willems methods for dental age estimation for Malaysian children aged 5–15 years old. Forensic Sci. Int. 2011, 204, 208.e1–208.e6. [Google Scholar]
- Timme, M.; Timme, W.H.; Olze, A.; Ottow, C.; Ribbecke, S.; Pfeiffer, H.; Schmeling, A. Dental age estimation in the living after completion of third molar mineralization: New data for Gustafson’s criteria. Int. J. Leg. Med. 2017, 131, 569–577. [Google Scholar] [CrossRef]
- Nystrom, M.; Kleemola-Kujala, E.; Evalahti, M.; Peck, L.; Kataja, M. Emergence of permanent teeth and dental age in a series of Finns. Acta Odontol. Scand. 2001, 59, 49–56. [Google Scholar]
- Hagg, U.; Taranger, J. Dental emergence stages and the pubertal growth spurt. Acta Odontol. Scand. 1981, 39, 295–306. [Google Scholar]
- Demirijian, A.; Goldstein, H.; Tanner, J.M. A new system of dental age assessment. Hum. Biol. 1973, 45, 211–227. [Google Scholar]
- Luca, S.D.; Giiorgio, S.D.; Buttu, A.C.; Biagi, R.; Cingolani, M.; Cameriere, R. Age estimation in children by measurement of open apices in tooth roots: Study of a Mexican sample. Forensic Sci. Int. 2012, 221, 155.e1–155.e7. [Google Scholar]
- Tunc, E.S.; Koyuturk, A.E. Dental age assessment using Demirjian method on northern Turkish children. Forensic Sci. Int. 2008, 175, 23–26. [Google Scholar]
- Blenkin, M.; Taylor, J. Age estimation charts for a modern Australian population. Forensic Sci. Int. 2012, 22, 106–112. [Google Scholar]
- Foti, B.; Llys, L.; Adalian, P.; Giustiniani, J.; Maczel, M.; Signoli, M.; Dutour, O.; Leonetti, G. New forensic approach to age determination in children based on tooth eruption. J. Forensic Sci. Int. 2003, 132, 49–56. [Google Scholar]
- Maber, M.; Liversidge, H.M.; Hector, M.P. Accuracy of age estimation of radiographic methods using developing teeth. Forensic Sci. Int. 2006, 159S, 68–73. [Google Scholar]
- Sobieska, E.; Fester, A.; Nieborak, M.; Zadurska, M. Assessment of the Dental Age of Children in the Polish Population with Comparison of the Demirjian and the Willems Methods. Med. Sci. Monit. 2018, 24, 8315–8321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, X.; Wang, M.; Zhou, Z.; Bian, X.; Qiu, C.; Li, C.; Yang, Z.; Chen, G.; Ji, F.; et al. Applicability and accuracy of Demirjian and Willems methods in a population of Eastern Chinese subadults. Forensic Sci. Int. 2018, 292, 90–96. [Google Scholar] [CrossRef]
- Willems, V.G.; Van-Olmen, A.; Spiessens, B.; Carels, C. Dental age estimation in Belgian children: Demirjian’s technique revisited. Forensic Sci. Int. 2001, 46, 893–895. [Google Scholar]
- Eid, R.; Simi, R.; Friggi, M.; Fisberg, M. Assessment of dental maturity of Brazilian children aged 6 to 14 years using Demirjian’s method. Int. J. Paediatr. Dent. 2002, 12, 423–428. [Google Scholar]
- Nemsi, H.; Ben Daya, M.; Salem, N.H.; Masmoudi, F.; Bouanène, I.; Maatouk, F.; Aissaoui, A.; Chadly, A. Applicability of Willems methods and Demirjian’s four teeth method for dental age estimation: Cross sectional study on Tunisian sub-adults. Forensic Sci. Int. 2018, 291, 281.e1–281.e9. [Google Scholar] [CrossRef]
- Stamm, A.D.; Cariego, M.; Vazquez, D.; Pujol, M.; Saiegh, J.; Bielli, M.; Hetch, P.; Carosi, M.; Cabirta, M. Use of the Demirjian method to estimate dental age in panoramic radiographs of patients treated at the Buenos Aires University School of Dentistry. Acta Odontol. Latinoam. 2022, 35, 25–30. [Google Scholar] [CrossRef]
- Moca, A.; Ciavoi, G.; Todor, B.; Negrutiu, B.; Cuc, E.; Dima, R.; Moca, R.; Vaida, L. Validity of the Demirjian Method for Dental Age Estimation in Romanian Children. Children 2022, 9, 567. [Google Scholar] [CrossRef]
- Staaf, V.; Mörnstad, H.; Welander, U. Age estimation based on tooth development: A test of reliability and validity. Scand. J. Dent. Res. 1991, 99, 281–286. [Google Scholar]
- Davis, P.J.; Hagg, U. The accuracy and precision of the “Demirjian system” when used for age determination in Chinese children. Swed. Dent. J. 1994, 18, 113–116. [Google Scholar]
- Levine, D.M.; Berenson, M.L.; Stephan, D. Estatística: Teoria e Aplicações Usando Microsoft Excel em Português, 6th ed.; LTC: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.M.; Healy, J.R. A New System for Estimating Skeletal Maturity from the Hand Wrist Standards Derived from a Study of 2,600 Healthy British Children; Centre International de l’Enfance: Paris, France, 1962. [Google Scholar]
- Shrout, P.; Fleiss, J. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar]
- Cortés, M.; Rojo, R.; García, E.; Martínez, M. Accuracy assessment of dental age estimation with the Willems, Demirjian and Nolla methods in Spanish children: Comparative cross-sectional study. BMC Pediatr 2020, 20, 361. [Google Scholar] [CrossRef]
- Bjelopavlovic, M.; Ann-Katrin, Z.; Petrowski, K. Forensic dental age estimation: Development of new algorithm based on the minimal necessary databases. J. Pers. Med. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Marôco, J. Análise Estatística com o SPSS Statistics, 5th ed.; Report Number: Lisboa, Portugal, 2011. [Google Scholar]
- Koshy, S.; Tandon, S. Dental age assessment: The applicability of the Demirjian’s method in south Indian children. Forensic Sci. Int. 1998, 94, 73–85. [Google Scholar]
- McKenna, C.; James, H.; Taylor, J.; Townsend, G. Tooth development standards for South Australia. Aust. Dent. J. 2002, 47, 223–227. [Google Scholar]
- Tompkins, R. Human population variability in relative dental development. Am. J. Phys. Anthr. 1996, 99, 79–102. [Google Scholar]
- Khorate, M.M.; Dinkar, A.D.; Ahmed, J. Accuracy of age estimation methods from orthopantomograph in forensic odontology: A comparative study. Forensic Sci. Int. 2014, 234, 184.e1–184.e8. [Google Scholar]
- Zhai, Y.; Park, H.; Han, J.; Wang, H.; Ji, F.; Tao, J. Dental age assessment in a northern Chinese population. J. Forensic Leg. Med. 2016, 38, 43–49. [Google Scholar] [CrossRef]
- Cardoso, H. Accuracy of developing tooth length as an estimate of age in human skeletal remains: The deciduous dentition. Forensic Sci. Int. 2007, 172, 17–22. [Google Scholar]
- Pavlović, S.; Pereira, C.P.; Santos, R.F. Age estimation in Portuguese population: The application of the London atlas of tooth development and eruption. Forensic Sci. Int. 2017, 272, 97–103. [Google Scholar] [CrossRef]
- Khanal, S.; Acharya, J.; Shah, P. Dental Age Estimation by Demirjian’s and Nolla’s Method in Children of Jorpati, Kathmandu. J. Coll. Med. Sci. 2018, 14, 137–141. [Google Scholar] [CrossRef]
- Cruz-Ladeira, A.; Linares-Argote, J.; Martinez-Rodriguez, M.; Rodriguez-Calvo, M.S.; Otero, X.L.; Concheiro, L. Dental age estimation in Spanish and Venezuelan children. Comparison of Demirjian and Chaillet’s Scores. Int. J. Leg. Med. 2010, 124, 105–112. [Google Scholar]
- Chen, J.W.; Guo, J.; Zhou, J.; Liu, R.K.; Chen, T.T.; Zou, S.J. Assessment of dental maturity of western Chinese children using Dermijian’s method. Forensic Sci. Int. 2010, 197, 119.e1–119.e4. [Google Scholar] [PubMed]
- Feijoo, G.; Barberia, A.; De Nova, J.; Prieto, J.L. Dental age estimation in Spanish children. Forensic Sci. Int. 2012, 223, 371.e1–371.e5. [Google Scholar] [PubMed]
- Feijoo, G.; Barberia, A.; De Nova, J.; Prieto, J.L. Permanent teeth development in a Spanish sample. Application to dental age estimation. Forensic Sci. Int. 2012, 214, 213.e1–213.e6. [Google Scholar] [PubMed]
- Frucht, S.; Schnegelsberg, C.; Schulte-Mönting, J.; Rose, E.; Jonas, I. Dental age in southwest Germany. A radiographic study. J. Orofac. Orthop. 2000, 61, 318–329. [Google Scholar]
- Galic, I.; Nakas, E.; Prohic, S.; Selimovic, E.; Obradovic, B.; Petrovecki, M. Dental age estimation among children aged 5-14 years using the Demirjian method in Bosnia-Herzegovina. Acta Stomatol. Croat. 2010, 44, 17–25. [Google Scholar]
- Lee, S.S.; Byuin, Y.S.; Park, M.J.; Choi, J.H.; Yoon, C.L.; Shin, K.J. The chronology of second and third molar mineralization in Koreans and its application to forensic age estimation. Int. J. Leg. Med. 2010, 124, 659–665. [Google Scholar]
ICC (1) Consistency | ||||||||
---|---|---|---|---|---|---|---|---|
95% Confidence Interval | 95% Confidence Interval | |||||||
Demirjian score | Single rater | Lower bound | Upper bound | Average of raters | Lower bound | Upper bound | F Value | |
ICC1 | I1 | 0.82 | 0.749 | 0.870 | 0.95 | 0.923 | 0.964 | 18.633 *** |
I2 | 0.84 | 0.785 | 0.891 | 0.96 | 0.936 | 0.970 | 22.483 *** | |
C | 0.77 | 0.694 | 0.838 | 0.93 | 0.901 | 0.954 | 14.512 *** | |
PM1 | 0.78 | 0.707 | 0.845 | 0.94 | 0.906 | 0.956 | 15.315 *** | |
PM2 | 0.82 | 0.758 | 0.875 | 0.95 | 0.926 | 0.966 | 19.438 *** | |
M1 | 0.82 | 0.756 | 0.875 | 0.95 | 0.926 | 0.965 | 19.360 *** | |
M2 | 0.86 | 0.802 | 0.900 | 0.96 | 0.942 | 0.973 | 24.706 *** | |
Global | 0.92 | 0.892 | 0.947 | 0.98 | 0.971 | 0.986 | 48.762 *** |
Predictors: | B | SE B | β | t |
---|---|---|---|---|
(Constant) | −168.01 | 11.80 | −14.24 *** | |
Demirjian global score | 3.45 | 0.13 | 0.69 | 27.22 *** |
R = 0.807, R2 = 0.651, SEE = 1.40, F(1, 572) = 1068.33, p < 0.001 | ||||
B | SE B | β | t | |
(Constant) | −7.10 | 0.52 | −13.67 *** | |
Lateral Incisor | −0.03 | 0.04 | −0.03 | −0.72 |
Central Incisor | −0.04 | 0.06 | −0.03 | −0.65 |
Canine | 0.28 | 0.08 | 0.17 | 3.63 *** |
1st Premolar | 0.46 | 0.05 | 0.35 | 8.84 *** |
2nd Premolar | 0.06 | 0.07 | 0.05 | 0.94 |
1st Molar | 0.22 | 0.03 | 0.22 | 7.25 *** |
2nd Molar | 0.40 | 0.05 | 0.34 | 7.99 *** |
R = 0.847, R2 = 0.717, SEE = 1.27, F(1, 566) = 205.21, p < 0.001 | ||||
Equation forecasting chronological age through the Demirjian global score: | ||||
Predicted chron. age = −168.01 + 3.45 × Demirjian score | ||||
Equations forecasting chronological age through the 4 significant teeth: | ||||
Predicted chron. age = −7.10 + 0.28 × Canine + 0.46 × 1st Premolar + 0.22 × 1st molar + 0.40 × 2nd Molar |
Predictors: | Boys | Girls | ||||||
---|---|---|---|---|---|---|---|---|
B | SE B | β | t | B | SE B | β | t | |
(Constant) | −6.06 | 0.65 | −9.27 *** | −8.24 | 0.80 | −10.29 *** | ||
Global score | 0.19 | 0.01 | 0.83 | 25.38 *** | 0.20 | 0.01 | 0.81 | 23.24 *** |
R = 0.829, R2 = 0.687, SEE = 1.36, F(1, 294) = 644.12, p < 0.001 | R = 0.814, R2 = 0.662, SEE = 1.36 F(1, 276) = 540.18, p < 0.001 | |||||||
B | SE B | β | t | B | SE B | β | t | |
(Constant) | −5.20 | 0.69 | −7.58 *** | −7.86 | 0.76 | −10.39 *** | ||
Lateral Incisor | −0.07 | 0.06 | −0.07 | −1.21 | 0.06 | 0.06 | 0.06 | 1.00 |
Central Incisor | 0.11 | 0.07 | 0.10 | 1.55 | −0.01 | 0.09 | −0.01 | −0.17 |
Canine | 0.24 | 0.10 | 0.14 | 2.32 * | 0.44 | 0.11 | 0.26 | 3.94 *** |
1st Premolar | 0.37 | 0.07 | 0.31 | 5.13 *** | 0.45 | 0.08 | 0.29 | 5.56 *** |
2nd Premolar | 0.18 | 0.09 | 0.13 | 1.90 | 0.13 | 0.10 | 0.09 | 1.38 |
1st Molar | −0.01 | 0.05 | −0.01 | −0.11 | −0.14 | 0.08 | −0.11 | −1.83 |
2nd Molar | 0.50 | 0.06 | 0.42 | 7.73 *** | 0.55 | 0.08 | 0.44 | 6.66 *** |
R = 0.865, R2 = 0.748, SEE = 1.23 F(1, 288) = 122.28, p < 0.001 | R = 0.866, R2 = 0.750, SEE = 1.18 F(1, 270) = 115.93, p < 0.001 | |||||||
Equations forecasting chronological age (estimation in years—global score): | ||||||||
Predicted chronological age (boys) = −6.06 + 0.19 × Demirjian score | Predicted chronological age (girls) = −8.24 + 0.20 × Demirjian score | |||||||
Equations forecasting chronological age (estimation in years) through the 3 significant teeth: | ||||||||
Predicted chronological age (boys) = −5.20 + 0.24 × Canine + 0.37 × 1st Premolar + 0.50 × 2nd Molar | Predicted chronological age (girls) = −7.86 + 0.44 × Canine + 0.45 × 1st Premolar + 0.55 × 2nd Molar |
Chronological Age | Λ Wilks | Age (Estimated Marginal Means—in Months) | ||||||
---|---|---|---|---|---|---|---|---|
Boys | Girls | Boys | Gilrs | |||||
Chronological (C) | Demirjian (D) | Error (D-C) | Chronological (C) | Demirjian (D) | Error (D-C) | |||
6–7 years (72–83 months, n = 41) | 0.03 *** (n = 21) | 0.06 *** (n = 20) | 72.39 | 90.81 | 18.42 | 72.19 | 91.81 | 19.62 |
7–8 years (84–95 months, n = 64) | 0.29 *** (n = 29) | 0.16 *** (n = 35) | 88.83 | 102.31 | 13.48 | 87.86 | 98.86 | 11.00 |
8–9 years (96–107 months, n = 60) | 0.16 *** (n = 36) | 0.23 *** (n = 24) | 98.94 | 107.11 | 8.17 | 102.25 | 114.88 | 12.63 |
9–10 years (108–119 months, n = 92) | 0.19 *** (n = 42) | 0.15 *** (n = 50) | 113.52 | 124.38 | 10.86 | 115.08 | 127.22 | 12.14 |
10–11 years (120–131 months, n = 81) | 0.22 *** (n = 37) | 0.14 *** (n = 44) | 124.46 | 133.11 | 8.65 | 125.36 | 146.23 | 20.87 |
11–12 years (132–143 months, n = 59) | 0.23 *** (n = 29) | 0.10 *** (n = 30) | 137.97 | 137.83 | −0.14 | 138.47 | 155.90 | 17.43 |
12–13 years (144–155 months, n = 49) | 0.40 *** (n = 28) | 0.06 *** (n = 21) | 148.64 | 159.46 | 10.82 | 149.91 | 165.95 | 16.04 |
13–14 years (156–167 months, n = 101) | 0.29 *** (n = 61) | 0.20 *** (n = 40) | 160.90 | 172.39 | 11.49 | 161.45 | 172.75 | 11.30 |
Global (mean) | 118.21 | 128.43 | 10.22 | 117.07 | 134.20 | 15.13 |
Chronological Age | Boys | Girls |
---|---|---|
6–7 years (72–83 months) | R = 0.713, R2 = 0.509, SEE = 0.23 F(7, 16) = 2.37, p = 0 0.073 [n = 24] | R = 0.827, R2 = 0.683, SEE = 0.21 F(7, 12) = 3.70, p = 0.023 [n = 20] |
Chronological age = 5.01 + 0.22 × canine | ||
7–8 years (84–95 months) | R = 0.877, R2 = 0.769, SEE = 0.17 F(7, 21) = 9.97, p < 0.001 [n = 29] | R = 0.759, R2 = 0.577, SEE = 0.22 F(7,27) = 5.25, p = 0.001 [n = 35] |
Chronological age = 7.03 − 0.09 × 1st molar + 0.072nd molar – 0.08 × central incisor + 0.08 × lateral incisor + 0.06 1st premolar | Chronological age = 2.72 − 0.15 × 2nd premolar | |
8–9 years (96–107 months) | R = 0.855, R2 = 0.731, SEE = 0.17 F(7, 28) = 10.85, p < 0.001 [n = 36] | R = 0.800, R2 = 0.641, SEE = 0.23 F(7, 16) = 4.08, p = 0.009 [n = 24] |
Chronological age = 5.37 + 0.13 × 2nd molar + 0.04 × central incisor | Chronological age = 4.65+ 0.22 × 2nd premolar | |
9–10 years (108–119 months) | R = 0.529, R2 = 0.280, SEE = 0.25 F(7, 34) =1.89, p = 0.102 [n = 42] | R = 0.633, R2 = 0.401, SEE = 0.21 F(7, 42) = 4.02, p = 0.002 [n = 50] |
Chronological age = 8.06 + 0.09 × lateral incisor | Chronological age = 7.02 + 0.11 × canine + 0.10 × central incisor − 0.131st premolar | |
10–11 years (120–131 months) | R = 0.455, R2 = 0.207, SEE = 0.33 F(7, 29) = 1.08, p = 0.399 [n = 37] | R = 0.462, R2 = 0.213, SEE = 0.28 F(7, 36) = 1.39, p = 0.238 [n = 44] |
11–12 years (132–143 months) | R = 0.623, R2 = 0.388, SEE = 0.24 F(7, 21) = 1.90, p = 0.121 [n = 29] | R = 0.700, R2 = 0.491, SEE = 0.24 F(7, 22) = 3.03, p = 0.022 [n = 30] |
Chronological age = −0.75 + 0.28 × 2nd molar + 0.17 × lateral incisor | ||
12–13 years (144–155 months) | R = 0.655, R2 = 0.429, SEE = 0.21 F(6, 21) = 2.63, p = 0.047 [n = 28] | R = 0.645, R2 = 0.416, SEE = 0.23 F(5, 15) = 2.14, p = 0.116 [n = 21] |
Chronological age = 21.99 + 0.26 × 2nd molar + 0.60 × 1st molar − 0.42 × 1st premolar | ||
13–14 years (156–167 months) | R = 0.519, R2 = 0.269, SEE = 0.23 F(6, 54) = 3.32, p = 0.007 [n = 61] | R = 0.467, R2 = 0.218, SEE = 0.24 F(5, 34) = 1.90, p = 0.120 [n = 40] |
Chronological age = 11.51 + 0.21 × 2nd molar + 0.37 × central incisor − 0.44 × 1st premolar |
Tooth | Boys | Girls |
---|---|---|
Central incisor | Chronological age = 4.95 + 0.43 × Central incisor | Chronological age = 5.14 + 0.37 × Central incisor |
R = 0.402, R2 = 0.161, SEE = 2.22 F(1, 294) = 56.62, p < 0.001 | R = 0.348, R2 = 0.121, SEE = 2.19 F(1, 276) = 38.04, p < 0.001 | |
Lateral incisor | Chronological age = 0.99 + 0.78 × Lateral incisor | Chronological age = −0.46 + 0.82 × Lateral incisor |
R = 0.668, R2 = 0.446, SEE = 1.80 F(1, 294) = 236.49, p < 0.001 | R = 0.615, R2 = 0.378, SEE = 1.84 F(1, 276) = 167.79, p < 0.001 | |
Canine | Chronological age = −2.79 + 1.27 × canine | Chronological age = −4.81 + 1.34 × canine |
R = 0.767, R2 = 0.588, SEE = 1.56 F(1, 294) = 419.04, p < 0.001 | R = 0.797, R2 = 0.635, SEE = 1.41 F(1, 276) = 480.00, p < 0.001 | |
First pre-molar | Chronological age = 1.13 + 0.70 × first pre-molar | Chronological age = −4.14 + 10.06 × first pre-molar |
R = 0.583, R2 = 0.340, SEE = 1.97 F(1, 294) = 151.35, p < 0.001 | R = 0.687, R2 = 0.472, SEE = 1.70 F(1, 276) = 246.87, p < 0.001 | |
Second pre-molar | Chronological age = −1.73 + 1.03 × second pre-molar | Chronological age = −2.67 + 1.03 × second pre-molar |
R = 0.764, R2 = 0.583, SEE = 1.56 F(1, 294) = 411.12, p < 0.001 | R = 0.711, R2 = 0.506, SEE = 1.64 F(1, 276) = 282.49, p < 0.001 | |
First molar | Chronological age = 1.35 + 0.54 × first molar | Chronological age = −2.72 + 0.87 × first molar |
R = 0.561, R2 = 0.315, SEE = 2.01 F(1, 294) = 134.95, p < 0.001 | R = 0.645, R2 = 0.417, SEE = 1.78 F(1, 276) = 197.10, p < 0.001 | |
Second molar | Chronological age = −0.30 +0.92 × second molar | Chronological age = −1.15 + 0.91 × second molar |
R = 0.774, R2 = 0.599, SEE = 1.53 F(1, 294) = 439.28, p < 0.001 | R = 0.743, R2 = 0.553, SEE = 1.56 F(1, 276) = 340.31, p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mónico, L.S.; Tomás, L.F.; Tomás, I.; Varela-Patiño, P.; Martin-Biedma, B. Adapting Demirjian Standards for Portuguese and Spanish Children and Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 12706. https://doi.org/10.3390/ijerph191912706
Mónico LS, Tomás LF, Tomás I, Varela-Patiño P, Martin-Biedma B. Adapting Demirjian Standards for Portuguese and Spanish Children and Adolescents. International Journal of Environmental Research and Public Health. 2022; 19(19):12706. https://doi.org/10.3390/ijerph191912706
Chicago/Turabian StyleMónico, Lisete S., Luís F. Tomás, Inmaculada Tomás, Purificación Varela-Patiño, and Benjamin Martin-Biedma. 2022. "Adapting Demirjian Standards for Portuguese and Spanish Children and Adolescents" International Journal of Environmental Research and Public Health 19, no. 19: 12706. https://doi.org/10.3390/ijerph191912706
APA StyleMónico, L. S., Tomás, L. F., Tomás, I., Varela-Patiño, P., & Martin-Biedma, B. (2022). Adapting Demirjian Standards for Portuguese and Spanish Children and Adolescents. International Journal of Environmental Research and Public Health, 19(19), 12706. https://doi.org/10.3390/ijerph191912706