Environmental Status and Human Health: Evidence from China
Abstract
:1. Introduction
2. The Difference of Human Health in China
3. Research Scheme Design
3.1. Variable Selection and Data Preprocessing
3.2. Semi-Parametric Additive Panel Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossman, M. On the concept of health capital and the demand for health. J. Political Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Dockery, W.D.; Pope, C.A.; Xu, X.; Spengler, J.D. An association between air pollution and mortality in six U.S cites. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Liu, Y.; Yu, D.; Chen, B.; Xu, X.; Jing, L.; Yu, G.; Zhang, S.; Zhang, J. Effect of air pollution on mortalities in Shenyang city. Chin. J. Public Health 1996, 1, 61–64. Available online: http://lib.cqvip.com/qk/96899X/199601/69087838860146040.html (accessed on 25 September 2022).
- Li, Y.; Wang, W.; Kan, H.; Xu, X. Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. Sci. Total Environ. 2010, 408, 1226–1227. [Google Scholar] [CrossRef]
- Tessum, C.W.; Paolella, D.A.; Chambliss, S.E.; Apte, J.S.; Hill, J.D.; Marshall, J.D. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv. 2021, 7, eabf4491. [Google Scholar] [CrossRef] [PubMed]
- Franz, J.S.; FitzRoy, F. Child mortality and environment in developing countries. Popul. Environ. 2006, 27, 263–284. [Google Scholar] [CrossRef]
- Qi, S. Interrelationship between growth, environment and population health: An empirical analysis based on China’s provincial data. China Popul. Resour. Environ. 2008, 18, 169–173. [Google Scholar]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H. Effects of urban parks on the local urban thermal environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Streiling, S.; Matzarakis, A. Influence of single and small clusters of trees on the bioclimate of a city: A case study. J. Arboriculture. 2003, 29, 309–316. [Google Scholar] [CrossRef]
- Dillen, S.M.E.; Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. J. Epidemiol. Community Health 2012, 66, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchcik, M.; Dudek, W.; Błażejczyk, K.; Milewski, P.; Błaxzxejczyk, A. Two faces to the greenery on housing estates-mitigating climate but aggravating allergy. A Warsaw case study. Urban For. Urban Green. 2016, 16, 170–181. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Greenspace, urbanity and health: Relationships in England. J. Epidemiol. Community Health 2007, 61, 681–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, R.; Sabel, C.E.; Lu, X.; Zhu, W.; Kan, H.; Nielsen, C.P.; Wang, H. Long-term trend and spatial pattern of PM2.5 induced premature mortality in China. Environ. Int. 2016, 97, 180–186. [Google Scholar] [CrossRef]
- Janssen, F.; Spriensma, A.S. The contribution of smoking to regional mortality differences in the Netherlands. Demogr. Res. 2012, 127, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Dolejs, J. Age trajectories of mortality from all diseases in the six most populated countries of the South America during the last decades. Bull. Math. Biol. 2014, 76, 2144–2174. [Google Scholar] [CrossRef]
- Behl, A.S. Trends in child mortality in India. Indian Pediatr. 2013, 50, 143–147. [Google Scholar] [CrossRef]
- Kan, H.; Chen, B.; Wang, H. Economic assessment of health impact due to particulate air pollution in urban areas of Shanghai. Chin. Health Econ. 2004, 23, 8–11. [Google Scholar]
- Dahlkvist, E.; Hartig, T.; Nilsson, A.; Högberg, H.; Skovdahl, K.; Engström, M. Garden greenery and the health of older people in residential care facilities: A multi-level cross-sectional study. J. Adv. Nurs. 2016, 72, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Bao, Q. Economic growth and environmental pollution an empirical test for the environmental Kuznets Curve hypothesis in China. Res. Financ. Econ. Issues 2006, 273, 3–17. [Google Scholar]
- Shafik, N.; Byopadhyay, S. Economic Growth and Environmental Quality: Time Series and Cross Country Evidence World Bank: Washington, DC, USA. 1992. Available online: https://ideas.repec.org/p/wbk/wbrwps/904.html (accessed on 25 September 2022).
- Mead, R.W.; Brajer, V. Protecting China’s children: Valuing the health impacts of reduced air pollution in Chinese cities. Environ. Dev. Econ. 2005, 10, 745–768. [Google Scholar] [CrossRef]
- Chen, B.; Hong, C.; Zhu, H.; Song, W.; Kan, H.; Lu, Y.; Mao, H. Quantitative evaluation of the impact of air sulfur dioxide on human health in the urban districts of Shanghai. J. Environ. Health 2002, 19, 11–13. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, W. Air pollution and health needs: Application of the Grossman model. J. World Econ. 2010, 6, 140–160. [Google Scholar]
- Stone, C. Additive regression and other nonparametric models. Ann. Stat. 1985, 13, 689–705. [Google Scholar] [CrossRef]
- Du, J.; Sun, X.; Cao, R.; Zhang, Z. Statistical inference for partially linear additive spatial autoregressive models. Spat. Stat. 2018, 25, 52–67. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L. Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann. Stat. 2007, 35, 2474–2503. [Google Scholar] [CrossRef]
Nation | Eastern Region | Central Region | Western Region | |||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Differences in the Nation | Mean | Differences in the Nation | Mean | Differences in the Nation | |
2011 | 5.84 | 0.76 | 5.65 | −0.20 | 6.05 | 0.20 | 5.89 | 0.05 |
2012 | 5.97 | 0.79 | 5.85 | −0.12 | 6.17 | 0.20 | 5.95 | −0.02 |
2013 | 5.98 | 0.74 | 5.84 | −0.15 | 6.11 | 0.13 | 6.03 | 0.05 |
2014 | 6.11 | 0.73 | 5.90 | −0.21 | 6.45 | 0.34 | 6.08 | −0.03 |
2015 | 5.98 | 0.80 | 5.78 | −0.19 | 6.20 | 0.22 | 6.01 | 0.03 |
2016 | 6.07 | 0.83 | 5.92 | −0.15 | 6.37 | 0.30 | 6.00 | −0.06 |
2017 | 6.14 | 0.84 | 5.99 | −0.15 | 6.45 | 0.31 | 6.08 | −0.07 |
2018 | 6.17 | 0.81 | 6.07 | −0.11 | 6.39 | 0.22 | 6.12 | −0.05 |
2019 | 6.21 | 0.86 | 6.04 | −0.17 | 6.60 | 0.39 | 6.11 | −0.10 |
Contribution Degree of Differences within the Region | Contribution Degree of Differences between the Region | ||||
---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | Total | ||
2011 | 44.30 | 8.25 | 42.87 | 95.42 | 4.58 |
2012 | 40.69 | 9.58 | 47.19 | 97.46 | 2.54 |
2013 | 39.21 | 15.88 | 42.5 | 97.59 | 2.41 |
2014 | 34.07 | 8.99 | 47.89 | 90.95 | 9.05 |
2015 | 33.94 | 12.27 | 49.58 | 95.78 | 4.22 |
2016 | 36.02 | 13.98 | 45.09 | 95.09 | 4.91 |
2017 | 40.02 | 11.49 | 43.47 | 94.98 | 5.02 |
2018 | 39.03 | 12.97 | 45.21 | 97.20 | 2.8 |
2019 | 38.16 | 9.23 | 45.25 | 92.65 | 7.35 |
df | p-Value | |
---|---|---|
82.78 | 4 | <2.2 × |
Variable | Estimation | Std | t-Value | p-Value |
---|---|---|---|---|
Intercept | 0.1014 *** | 0.0260 | 3.900 | <0.0001 |
polu | 0.4293 ** | 0.1312 | 3.271 | 0.0012 |
Log(greenland) | −0.5756 ** | 0.1938 | −2.971 | 0.0033 |
doctor | 0.0838 | 0.0540 | 1.553 | 0.1216 |
Log(pgdp) | 1.0987 *** | 0.1956 | 5.617 | <0.0001 |
Variable | edf | Ref.df | t-Value | p-Value |
---|---|---|---|---|
S (polu) | 8.3338 *** | 8.8515 | 5.324 | <0.0001 |
S (Log(greenland)) | 8.0546 *** | 8.5740 | 10.549 | <0.0001 |
S (doctor) | 0.7325 *** | 0.7325 | 55.998 | <0.0001 |
S (Log(pgdp)) | 8.2432 *** | 8.7898 | 11.239 | <0.0001 |
Variable | Estimation | Std | t-Value | p-Value |
---|---|---|---|---|
Intercept | 0.1026 *** | 0.0267 | 3.840 | <0.0001 |
polu | 0.4308 ** | 0.1314 | 3.280 | 0.0012 |
Log(greenland) | −0.5685 ** | 0.1929 | −2.947 | 0.0035 |
Log(pgdp) | 1.1096 *** | 0.1965 | 5.646 | <0.0001 |
Variable | edf | Ref.df | t-Value | p-Value |
---|---|---|---|---|
S (polu) | 8.334 *** | 8.851 | 5.319 | <0.0001 |
S (Log(greenland)) | 8.059 *** | 8.578 | 10.538 | <0.0001 |
S (doctor) | 1.000 *** | 1.000 | 15.628 | <0.0001 |
S (Log(pgdp)) | 8.245 *** | 8.792 | 11.249 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Xiang, Z.; Xi, H. Environmental Status and Human Health: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 12623. https://doi.org/10.3390/ijerph191912623
Cheng S, Xiang Z, Xi H. Environmental Status and Human Health: Evidence from China. International Journal of Environmental Research and Public Health. 2022; 19(19):12623. https://doi.org/10.3390/ijerph191912623
Chicago/Turabian StyleCheng, Suli, Zubing Xiang, and Haojun Xi. 2022. "Environmental Status and Human Health: Evidence from China" International Journal of Environmental Research and Public Health 19, no. 19: 12623. https://doi.org/10.3390/ijerph191912623
APA StyleCheng, S., Xiang, Z., & Xi, H. (2022). Environmental Status and Human Health: Evidence from China. International Journal of Environmental Research and Public Health, 19(19), 12623. https://doi.org/10.3390/ijerph191912623