Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neal, J.M.; Barrington, M.J.; Fettiplace, M.R.; Gitman, M.; Memtsoudis, S.G.; Mörwald, E.E.; Weinberg, G. The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity: Executive Summary 2017. Reg. Anesth. Pain Med. 2018, 43, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Premier Perspective Database. Available online: https://www.premierinc.com/transforming-healthcare/healthcare-performanceimprovement/premierresearch-services/ (accessed on 2 July 2020).
- Allegri, M.; Bugada, D.; Grossi, P.; Manassero, A.; Pinciroli, R.L.; Zadra, N.; Borghi, B. Italian registry of complications associated with regional anesthesia (RICALOR). An incidence analysis from a prospective clinical survey. Minerva Anestesiol. 2016, 82, 392–402. [Google Scholar] [PubMed]
- Heinonen, J.; Litonius, E.; Pitkanen, M.; Rosenberg, P. Incidence of severe local anaesthetic toxicity and adoption of lipid rescue in Finnish anaesthesia departments in 2011–2013. Acta Anaesthesiol. Scand. 2015, 59, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Gitman, M.; Barrington, M.J. Local Anesthetic Systemic Toxicity. Reg. Anesthesia Pain Med. 2018, 43, 124–130. [Google Scholar] [CrossRef]
- Butterworth, J.F., IV; Strichartz, G.R. Molecular mechanisms of local anesthesia: A review. Anesthesiology 1990, 72, 711–734. [Google Scholar] [CrossRef] [PubMed]
- Coyle, D.E.; Sperelakis, N. Bupivacaine and lidocaine blockade of calcium-mediated slow action potentials in guinea pig ventricular muscle. J. Pharmacol. Exp. Ther. 1987, 242, 1001–1005. [Google Scholar] [PubMed]
- Komai, H.; Lokuta, A.J. Interaction of bupivacaine and tetracaine with the sarcoplasmic reticulum Ca2+ release channel of skeletal and cardiac muscle. Anesthesiology 1999, 90, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, J.F., 4th; Brownlow, R.C.; Leith, J.P.; Prielipp, R.C.; Cole, L.R. Bupivacaine inhibits cyclic-3ʹ,5ʹ-adenosine monophosphate production. A possible contributing factor to cardiovascular toxicity. Anesthesiology 1993, 79, 88–95. [Google Scholar] [CrossRef]
- Sztark, F.; Malgat, M.; Dabadie, P.; Mazat, J.P. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology 1998, 88, 1340–1349. [Google Scholar] [CrossRef]
- Fettiplace, M.R.; Kowal, K.; Ripper, R.; Young, A.; Lis, K.; Rubinstein, I.; Weinberg, G. Insulin signaling in bupivacaine-induced cardiac toxicity: Sensitization during recovery and potentiation by Lipid emulsion. Anesthesiology 2016, 124, 428–442. [Google Scholar] [CrossRef]
- Weinberg, G.L.; VadeBoncouer, T.R.; Ramaraju, G.A.; Garcia-Amaro, M.F.; Cwik, M.J. Pretreatment or resuscitation with a lipid emulsion shifts thedose-response to bupivacaine-induced asystole in rats. Anesthesiology 1998, 88, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, M.A.; Abel, M.; Fischer, G.W.; Itzkovich, C.J.; Eisenkraft, J.B. Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest. Anesthesiology 2006, 105, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, G.L.; Di Gregorio, G.; Ripper, R.; Kelly, K.; Massad, M.; Edelman, L.; Feinstein, D.L. Resuscitation with lipid versus epinephrine in a rat model of bupivacaine overdose. Anesthesiology 2008, 108, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Fettiplace, M.R.; Lis, K.; Ripper, R.; Kowal, K.; Pichurko, A.; Vitello, D.; Weinberg, G. Multi-modal contributions to detoxification of acute pharmacotoxicity by a triglyceride micro-emulsion. J. Control. Release. 2015, 198, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Xia, Y.; Wang, Q.; Wu, Y.; Dong, X.; Chen, C.; Tang, W.; Zhang, Y.; Luo, M.; Wang, X.; et al. The effect of lipid emulsion on pharmacokinetics and tissue distribution of bupivacaine in rats. Anesth. Analg. 2013, 116, 804–809. [Google Scholar] [CrossRef]
- Dureau, P.; Charbit, B.; Nicolas, N.; Benhamou, D.; Mazoit, J.X. Effect of Intralipid® on the dose of ropivacaine or levobupivacaine tolerated by volunteers: A clinical and pharmacokinetic study. Anesthesiology 2016, 125, 474–483. [Google Scholar] [CrossRef]
- Stehr, S.N.; Ziegeler, J.C.; Pexa, A.; Oertel, R.; Deussen, A.; Koch, T.; Hübler, M. The effects of lipid infusion on myocardial function and bioenergetics in l-bupivacaine toxicity in the isolated rat heart. Anesth. Analg. 2007, 104, 186–192. [Google Scholar] [CrossRef]
- Barrington, M.J.; Kluger, R. Ultrasound guidance reduces the risk of local anesthetic systemic toxicity following peripheral nerve blockade. Reg. Anesth. Pain Med. 2013, 38, 289–299. [Google Scholar] [CrossRef]
- Esposito, M.; Montana, A.; Liberto, A.; Filetti, V.; Di Nunno, N.; Amico, F.; Salerno, M.; Loreto, C.; Sessa, F. Anaphylactic Death: A New Forensic Workflow for Diagnosis. Healthcare 2021, 9, 117. [Google Scholar] [CrossRef]
- Riff, C.; Le Caloch, A.; Dupouey, J.; Allanioux, L.; Leone, M.; Blin, O.; Bourgoin, A.; Guilhaumou, R. Local Anesthetic Plasma Concentrations as a Valuable Tool to Confirm the Diagnosis of Local Anesthetic Systemic Toxicity? A Report of 10 Years of Experience. Pharmaceutics 2022, 14, 708. [Google Scholar] [CrossRef]
- Skryabina, E.A.; Dunn, T.S. Disposable infusion pumps. Am. J. Health Pharm. 2006, 63, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Mizuuchi, M.; Yamakage, M.; Iwasaki, S.; Kimura, A.; Namiki, A. The infusion rate of most disposable, non-electric infusion pumps decreases under hypobaric conditions. Can. J. Anaesth. 2003, 50, 657–662. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gola, W.; Bialka, S.; Zajac, M.; Misiolek, H. Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade. Int. J. Environ. Res. Public Health 2022, 19, 12223. https://doi.org/10.3390/ijerph191912223
Gola W, Bialka S, Zajac M, Misiolek H. Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade. International Journal of Environmental Research and Public Health. 2022; 19(19):12223. https://doi.org/10.3390/ijerph191912223
Chicago/Turabian StyleGola, Wojciech, Szymon Bialka, Marek Zajac, and Hanna Misiolek. 2022. "Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade" International Journal of Environmental Research and Public Health 19, no. 19: 12223. https://doi.org/10.3390/ijerph191912223
APA StyleGola, W., Bialka, S., Zajac, M., & Misiolek, H. (2022). Cardiac Arrest after Small Doses Ropivacaine: Local Anesthetic Systemic Toxicity in the Course of Continuous Femoral Nerve Blockade. International Journal of Environmental Research and Public Health, 19(19), 12223. https://doi.org/10.3390/ijerph191912223

