Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sociodemographic, Clinical, and Lifestyle Data
2.3. Neuropsychological and Behavioral Testing for Primary Endpoints
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The relationship between cell phone use, academic performance, anxiety, and Satisfaction with Life in college students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Lee, D.; Jackson, M. The Simultaneous Effects of Socioeconomic Disadvantage and Child Health on Children’s Cognitive Development. Demography 2017, 54, 1845–1871. [Google Scholar] [CrossRef] [PubMed]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.H.; Howie, E.K.; Coenen, P.; Straker, L.M. “From the moment I wake up I will use it⋯every day, very hour”: A qualitative study on the patterns of adolescents’ mobile touch screen device use from adolescent and parent perspectives. BMC Pediatr. 2019, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Twenge, J.M.; Hisler, G.C.; Krizan, Z. Associations between screen time and sleep duration are primarily driven by portable electronic devices: Evidence from a population-based study of U.S. children ages 0–17. Sleep Med. 2018, 56, 211–218. [Google Scholar] [CrossRef]
- Marques, A.; Calmeiro, L.; Loureiro, N.; Frasquilho, D.; de Matosabg, M.G. Health complaints among adolescents: Associations with more screen-based behaviours and less physical activity. J. Adolesc. 2015, 44, 150–157. [Google Scholar] [CrossRef]
- Babic, M.J.; Smith, J.J.; Morgan, P.J.; Eather, N.; Plotnikoff, R.C.; Lubans, D.R. Longitudinal associations between changes in screen-time and mental health outcomes in adolescents. Ment. Health Phys. Act. 2017, 12, 124–131. [Google Scholar] [CrossRef]
- Zink, J.; Belcher, B.R.; Kechter, A.; Stone, M.D.; Leventhal, A.M. Reciprocal associations between screen time and emotional disorder symptoms during adolescence. Prev. Med. Rep. 2019, 13, 281–288. [Google Scholar] [CrossRef]
- Girela-Serrano, B.M.; Spiers, A.D.V.; Ruotong, L.; Gangadia, S.; Toledano, M.B.; Di Simplicio, M. Impact of mobile phones and wireless devices use on children and adolescents’ mental health: A systematic review. Eur. Child Adolesc. Psychiatry 2022, 1, 1–31. [Google Scholar] [CrossRef]
- Wacks, Y.; Weinstein, A.M. Excessive Smartphone Use Is Associated With Health Problems in Adolescents and Young Adults. Front. Psychiatry 2021, 12, 762. [Google Scholar] [CrossRef] [PubMed]
- Bickham, D.S.; Hswen, Y.; Rich, M. Media use and depression: Exposure, household rules, and symptoms among young adolescents in the United States. Int. J. Public Health 2015, 60, 147. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wing, Y.K.; Hao, Y.; Li, W.; Zhang, J.; Zhang, B. The associations of long-time mobile phone use with sleep disturbances and mental distress in technical college students: A prospective cohort study. Sleep 2019, 42, zsy213. [Google Scholar] [CrossRef] [PubMed]
- George, M.J.; Russell, M.A.; Piontak, J.R.; Odgers, C.L. Concurrent and Subsequent Associations between Daily Digital Technology Use and High-Risk Adolescents’ Mental Health Symptoms. Child Dev. 2018, 89, 78. [Google Scholar] [CrossRef]
- Schoeni, A.; Roser, K.; Röösli, M. Symptoms and the use of wireless communication devices: A prospective cohort study in Swiss adolescents. Environ. Res. 2017, 154, 275–283. [Google Scholar] [CrossRef]
- Julvez, J.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; Torrent, J.; et al. Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Front. Pediatr. 2021, 9, 593847. [Google Scholar] [CrossRef] [PubMed]
- Rei, M.; Severo, M.; Rodrigues, S. Reproducibility and validity of the Mediterranean Diet Quality Index (KIDMED Index) in a sample of Portuguese adolescents. Br. J. Nutr. 2021, 126, 1737–1748. [Google Scholar] [CrossRef]
- Forns, J.; Esnaola, M.; López-Vicente, M.; Suades-González, E.; Alvarez-Pedrerol, M.; Julvez, J.; Grellier, J.; Sebastián-Gallés, N.; Sunyer, J. The n-back test and the attentional network task as measures of child neuropsychological development in epidemiological studies. Neuropsychology 2014, 28, 519–529. [Google Scholar] [CrossRef]
- Fan, J.; McCandliss, B.D.; Sommer, T.; Raz, A.; Posner, M.I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 2002, 14, 340–347. [Google Scholar] [CrossRef]
- López-Vicente, M.; Forns, J.; Suades-González, E.; Esnaola, M.; García-Esteban, R.; Álvarez-Pedrerol, M.; Júlvez, J.; Burgaleta, M.; Sebastián-Gallés, N.; Sunyer, J. Developmental trajectories in primary schoolchildren using n-back task. Front. Psychol. 2016, 7, 716. [Google Scholar] [CrossRef] [Green Version]
- THURSTONE, T.G. The Tests of Primary Mental Abilities. Pers. Guid. J. 1957, 35, 569–576. [Google Scholar] [CrossRef]
- Fu, J.; Xu, P.; Zhao, L.; Yu, G. Impaired orienting in youth with Internet Addiction: Evidence from the Attention Network Task (ANT). Psychiatry Res. 2018, 264, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.J.; Atefi, M.; Kholghi, F. The Pattern of Mobile Phone Use and Prevalence of Self-Reported Symptoms in Elementary and Junior High School Students in Shiraz, Iran. Iran. J. Med. Sci. 2011, 36, 96. [Google Scholar] [PubMed]
- Hadar, A.; Hadas, I.; Lazarovits, A.; Alyagon, U.; Eliraz, D.; Zangen, A. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse. PLoS ONE 2017, 12, e0180094. [Google Scholar] [CrossRef]
- Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age; World Health Organization: Geneva, Switzerland, 2019; ISBN 9789241550536.
- Toga, A.W.; Thompson, P.M.; Sowell, E.R. Mapping brain maturation. Trends Neurosci. 2006, 29, 148–159. [Google Scholar] [CrossRef]
- Rossi, A.F.; Pessoa, L.; Desimone, R.; Ungerleider, L.G. The prefrontal cortex and the executive control of attention. Exp. Brain Res. 2009, 192, 489. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The Attention System of the Human Brain: 20 Years After. Annu. Rev. Neurosci. 2012, 35, 73. [Google Scholar] [CrossRef]
- Soleimanpour, S.; Geierstanger, S.; Brindis, C.D. Systems of Care and Clinical Practice: Adverse Childhood Experiences and Resilience: Addressing the Unique Needs of Adolescents. Acad. Pediatr. 2017, 17, S108–S114. [Google Scholar] [CrossRef]
- Keane, E.; Kelly, C.; Molcho, M.; Gabhainn, S.N. Physical activity, screen time and the risk of subjective health complaints in school-aged children. Prev. Med. 2017, 96, 21–27. [Google Scholar] [CrossRef]
- Kelly, S.; Stephens, J.; Hoying, J.; McGovern, C.; Melnyk, B.M.; Militello, L. Special Section: Council for the Advancement of Nursing Science 2016: A systematic review of mediators of physical activity, nutrition, and screen time in adolescents: Implications for future research and clinical practice. Nurs. Outlook 2017, 65, 530–548. [Google Scholar] [CrossRef]
- Tsiros, M.D.; Samaras, M.G.; Coates, A.M.; Olds, T. Use-of-time and health-related quality of life in 10- to 13-year-old children: Not all screen time or physical activity minutes are the same. Qual. Life Res. 2017, 26, 3119–3129. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.; Bull, F.C.; Andersen, L.B.; Hallal, P.C.; Guthold, R.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Cain, N.; Gradisar, M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med. 2010, 11, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Brogli, E.; Thomas, G.N.; Taheri, S. Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias. Sleep Med. 2014, 15, 240–247. [Google Scholar] [CrossRef]
- Hale, L.; Guan, S. Screen Time and Sleep among School-Aged Children and Adolescents: A Systematic Literature Review. Sleep Med. Rev. 2016, 21, 50–58. [Google Scholar] [CrossRef]
- Cabré-Riera, A.; Torrent, M.; Donaire-Gonzalez, D.; Vrijheid, M.; Cardis, E.; Guxens, M. Telecommunication devices use, screen time and sleep in adolescents. Environ. Res. 2019, 171, 341–347. [Google Scholar] [CrossRef]
- Shang, L.; Wang, J.; Loughlin, J.; Tremblay, A.; Mathieu, M.; Henderson, M.; Gray-Donald, K. Screen time is associated with dietary intake in overweight Canadian children. Prev. Med. Rep. 2015, 2, 265–269. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Exposure: Daily MPSE | |||||
---|---|---|---|---|---|---|
n | Low (<9 min/day) | n | Medium (9–20 min/day) | n | High (>20 min/day) | |
Biological markers | ||||||
Sex * | 224 | 191 | 218 | |||
female | 108 (48) | 112 (59) | 126 (58) | |||
male | 116 (52) | 79 (41) | 92 (42) | |||
BMI | 223 | 190 | 217 | |||
normal | 163 (73) | 143 (75) | 145 (67) | |||
overweight | 60 (27) | 47 (25) | 72 (33) | |||
Age *, mean (SD) | 211 | 13.75 (0.93) | 184 | 13.91 (0.96) | 213 | 14.01 (0.95) |
Maternal | ||||||
MEB | 224 | 191 | 217 | |||
low | 90 (40) | 69 (36) | 95 (44) | |||
high | 134 (60) | 122 (64) | 122 (56) | |||
Lifestyle | ||||||
PAF | 224 | 189 | 217 | |||
Once a week | 40 (18) | 43 (23) | 33 (15) | |||
Twice a week | 64 (29) | 49 (26) | 49 (23) | |||
3 times a week | 58 (26) | 42 (22) | 64 (29) | |||
>3 times a week | 62 (28) | 55 (29) | 71 (33) | |||
Sleep hours * | 219 | 185 | 216 | |||
less than 8 | 44 (20) | 42 (23) | 74 (34) | |||
8 or more | 175 (80) | 143 (77) | 142 (66) | |||
MD scores * | 216 | 186 | 184 | |||
normal | 111 (51) | 117 (63) | 114 (62) | |||
high | 105 (49) | 69 (37) | 70 (38) |
Cognitive Outcomes (Mean, (SD)) | Exposure: Daily MPSE | |||||
---|---|---|---|---|---|---|
n | Low (<9 min/d) | n | Medium (9–20 min/d) | n | High (>20 min/d) | |
HRT-SE (ms) (Inattentiveness) | 213 | 143.84 (66.00) | 185 | 157.76 (75.51) | 209 | 153.95 (76.97) |
PMA-R score (number of correct items) (Fluid Intelligence) | 213 | 16.69 (5.71) | 183 | 17.05 (5.62) | 209 | 17.15 (5.36) |
N-Back score (d’) (Working Memory) | 211 | 2.08 (0.76) | 183 | 2.13 (0.8) | 207 | 2.04 (0.77) |
MPSE | HRT-SE (ms) (Inattentiveness) | PMA-R Score (Fluid Intelligence) | N-Back Score (Working Memory) | |||
---|---|---|---|---|---|---|
CA | AA | CA | AA | CA | AA | |
N | 607 | 580 | 605 | 578 | 601 | 574 |
Low (<9 min/d) | ref. | ref. | ref. | ref. | ref. | ref. |
Medium (9–20 min/d) | 14.9 * (0.6, 29.3) | 17.6 * (3.4, 31.7) | 0.36 (−0.73, 1.47) | −0.15 (−1.25, 0.95) | 0.456 (−0.11, 0.20) | 0.019 (−0.14, 0.18) |
High (>20 min/d) | 11.1 * (2.8, 25.0) | 12.9 (−0.8, 31.7) | 0.46 (−0.6, 1.52) | 0.11 (−0.95, 1.18) | −0.428 (−0.19,0.11) | −0.441 (−0.20, 0.11) |
MPSE | HRT-SE (ms) (Inattentiveness) | PMA-R Score (Fluid Intelligence) | N-Back Score (Working Memory) | |||
---|---|---|---|---|---|---|
AA | FAA | AA | FAA | AA | FAA | |
N | 580 | 559 | 578 | 557 | 574 | 553 |
Low (<9 min/d) | ref. | ref. | ref. | ref. | ref. | ref. |
Medium (9–20 min/d) | 17.6 * (3.4, 31.7) | 15.8 * (1.4, 30.3) | −0.15 (−1.25, 0.95) | 0.09 (−1.12, 1.14) | 0.019 (−0.14, 0.18) | 0.003 (−0.16, 0.17) |
High (>20 min/d) | 12.9 (−0.8, 31.7) | 14.97 * (0.9, 29.1) | 0.11 (−0.95, 1.18) | 0.21 (−1.08, 1.12) | −0.441 (−0.20, 0.11) | −0.052 (−0.21, 0.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poujol, M.C.; Pinar-Martí, A.; Persavento, C.; Delgado, A.; Lopez-Vicente, M.; Julvez, J. Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health. Int. J. Environ. Res. Public Health 2022, 19, 12070. https://doi.org/10.3390/ijerph191912070
Poujol MC, Pinar-Martí A, Persavento C, Delgado A, Lopez-Vicente M, Julvez J. Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health. International Journal of Environmental Research and Public Health. 2022; 19(19):12070. https://doi.org/10.3390/ijerph191912070
Chicago/Turabian StylePoujol, Monica Cristina, Ariadna Pinar-Martí, Cecilia Persavento, Anna Delgado, Monica Lopez-Vicente, and Jordi Julvez. 2022. "Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health" International Journal of Environmental Research and Public Health 19, no. 19: 12070. https://doi.org/10.3390/ijerph191912070
APA StylePoujol, M. C., Pinar-Martí, A., Persavento, C., Delgado, A., Lopez-Vicente, M., & Julvez, J. (2022). Impact of Mobile Phone Screen Exposure on Adolescents’ Cognitive Health. International Journal of Environmental Research and Public Health, 19(19), 12070. https://doi.org/10.3390/ijerph191912070