Time Estimation or Autonomic Heart Rate Regulation: Which Mechanism Is More Sensitive in the Development of Internet Addiction in Adolescents?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menshikova, T.I. Specific of aggressive behaviour of adolescents. Vestn. Taganrog. Inst. Im. AP Chekhova 2017, 2, 106–115. [Google Scholar]
- Kim, J.; Hong, H.; Lee, J.; Hyun, M.H. Effects of time perspective and self-control on procrastination and Internet addiction. J. Behav. Addict. 2017, 6, 229–236. [Google Scholar] [CrossRef]
- Ogden, R.S.; Henderson, J.; McGlone, F.; Richter, M. Time distortion under threat: Sympathetic arousal predicts time distortion only in the context of negative, highly arousing stimuli. PLoS ONE 2019, 14, e0216704. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.F. Time Perception and the Heart. [Electronic Source]. Available online: http://timingforum.org/time-perception-and-the-heart/ (accessed on 10 June 2022).
- Craig (Bad), A.D. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M.; van Wassenhove, V. The experience of time: Neural mechanisms and the interplay of emotion, cognition and embodiment. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; Mioni, G.; Levorato, I.; Grondin, S.; Stablum, F.; Sarlo, M. Heart rate variability helps tracking time more accurately. Brain Cogn. 2015, 101, 57–63. [Google Scholar] [CrossRef]
- Berntson, G.G.; Bigger, J.T., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef] [PubMed]
- Zahn, D.; Adams, J.; Krohn, J.; Wenzel, M.; Mann, C.G.; Gomille, L.K.; Jacobi-Scherbening, V.; Kubiak, T. Heart rate variability and self-control—A meta-analysis. Biol. Psychol. 2016, 115, 9–26. [Google Scholar] [CrossRef]
- Huang, A.C.W. Autonomic nervous system and brain circuitry for internet addiction. Internet Addict. 2017, 161–180. [Google Scholar] [CrossRef]
- Lin, P.C.; Kuo, S.Y.; Lee, P.H.; Sheen, T.C.; Chen, S.R. Effects of internet addiction on heart rate variability in school-aged children. J. Cardiovasc. Nurs. 2014, 29, 493–498. [Google Scholar] [CrossRef]
- Hsieh, D.L.; Hsiao, T.C. Respiratory sinus arrhythmia reactivity of internet addiction abusers in negative and positive emotional states using film clips stimulation. Biomed. Eng. Online 2016, 15, 69. [Google Scholar] [CrossRef] [Green Version]
- Krivinogova, O.; Krivonogova, E.; Poskotinova, L. Heart rate variability, time estimation and internet depend behaviour in 16–17-years-old adolescents: A study in Russian Arctic. Life 2021, 11, 497. [Google Scholar] [CrossRef]
- WHO. Child Growth Standards. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators (accessed on 10 June 2022).
- Chen, S.-H.; Weng, L.-J.; Su, Y.-J.; Wu, H.-M.; Yang, P.-F. Development of a Chinese internet addiction scale and its psychometric study. Chin. J. Psychol. 2003, 45, 279–294. [Google Scholar]
- Malygin, V.L.; Feklysov, K.A.; Iskandirova, A.B.; Antonenko, A.A. Methodological approaches to the early detection of internet dependent behavior. Med. Psihol. Ross. 2011, 6, 32–33. [Google Scholar]
- Halberg, F.; Sothern, R.B.; Cornélissen, G.; Czaplicki, J. Chronomics, human time estimation, and aging. Clin. Interv. Aging 2008, 3, 749–760. [Google Scholar] [CrossRef]
- American Heart Association. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Baevsky, R.M.; Chernikova, A.G. Heart rate variability analysis: Physiological foundations and main methods. Cardiometry 2017, 10, 66–76. [Google Scholar] [CrossRef]
- Apaydın, N.; Üstün, S.; Kale, E.H.; Çelikağ, İ.; Özgüven, H.D.; Baskak, B.; Çiçek, M. Neural mechanisms underlying time perception and reward anticipation. Front. Hum. Neurosci. 2018, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, H.; Tian, M. Molecular and functional imaging of internet addiction. BioMed Res. Int. 2015, 2015, 378675. [Google Scholar] [CrossRef]
- Kannan, B.; Karthik, S.; Pal, G.K.; Menon, V. Gender variation in the prevalence of internet addiction and impact of internet addiction on reaction time and heart rate variability in medical college students. J. Clin. Diagn. Res. 2019, 13, CC01–CC04. [Google Scholar] [CrossRef]
- Turel, O.; Brevers, D.; Bechara, A. Time distortion when users at-risk for social media addiction engage in non-social media tasks. J. Psychiatr. Res. 2018, 97, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Darnai, G.; Perlaki, G.; Zsidó, A.N.; Inhóf, O.; Orsi, G.; Horváth, R.; Nagy, S.A.; Lábadi, B.; Tényi, D.; Kovács, N.; et al. Internet addiction and functional brain networks: Task-related fMRI study. Sci. Rep. 2019, 9, 15777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Group I, n = 14 | Group II, n = 17 | Group III, n= 18 | H Test, Kruskal–Wallis | p Kruskal–Wallis |
---|---|---|---|---|---|
1 | 2 | 3 | |||
CIAS, score | 40 (33; 45) | 39 (33; 43) | 59 (52; 67) b (1–2, 1–3) | 29.6 | 0.001 |
Com, score | 8 (6; 9) | 6 (6; 9) | 12.5 (11; 14) b (1–3, 2–3) | 28.3 | 0.001 |
Wit, score | 8 (6; 9) | 8 (7; 10) | 13.5 (12; 15) b (1–3, 2–3) | 27.7 | 0.001 |
Tol, score | 7 (6; 9) | 6 (5; 8) | 10.5 (9; 12) b (1–3, 2–3) | 16.8 | 0.001 |
IH-RP, score | 8.5 (7; 11) | 9 (8; 11) | 14 (10; 16) b (1–3, 2–3) | 17.8 | 0.001 |
Tm, score | 7 (6; 8) | 6 (5; 9) | 10 (8; 13) b (1–3, 2–3) | 15.5 | 0.001 |
IM, sec | 73 (66; 84) | 55 (50; 59) b (1–2) | 64.5 (60; 72) b (2–3) | 23.2 | 0.001 |
Variables | Group I, n = 14 | Group II, n = 17 | Group III, n = 18 | H Test, Kruskal–Wallis | p Kruskal–Wallis |
---|---|---|---|---|---|
1 | 2 | 3 | |||
HR, bpm | 78.1 (67.3; 84.3) | 82.6 (76.5; 87.5) | 84.7 (79.1; 88.3) | 3.14 | 0.181 |
rMSSD, Ms | 51.5 (44.2; 66.2) | 32.9 (20.2; 34.8) c (1–2) | 34.3 (30.1; 46.4) | 11.1 | 0.002 |
pNN50, % | 33.9 (24.2; 37.8) | 10.1 (2.1; 14.1) c (1–2) | 13.2 (9.6; 27.3) | 11.5 | 0.002 |
SDNN, Ms | 64.3 (56.7; 81.1) | 43.1 (36.1; 55.1) c (1–2) | 52.7 (42.2; 62.4) | 9.7 | 0.004 |
SI, units | 64.1 (35.5; 77.1) | 127.6 (88.8; 224.2) b (1–2) | 104.5 (86.2; 161.8) | 7.9 | 0.011 |
TP, ×1000, Ms2 | 3.5 (2.9; 6.9) | 1.7 (1.2; 2.4) c (1–2) | 2.1 (1.4; 3.2) b (1–3) | 12.7 | 0.001 |
HF, ×1000, Ms2 | 1.7 (1.2; 2.2) | 0.4 (0.2; 0.6) c (1–2) | 0.7 (0.6; 1.1) c (2–3) | 14.8 | 0.001 |
LF, ×1000, Ms2 | 1.1 (0.8; 2.8) | 0.5 (0.4; 0.9) b (1–2) | 0.7 (0.5; 1.1) b (1–3) | 10.6 | 0.005 |
VLF, ×1000, Ms2 | 0.4 (0.2; 0.8) | 0.2 (0.1; 0.5) | 0.3 (0.2; 0.6) | 2.1 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivonogova, O.; Krivonogova, E.; Poskotinova, L. Time Estimation or Autonomic Heart Rate Regulation: Which Mechanism Is More Sensitive in the Development of Internet Addiction in Adolescents? Int. J. Environ. Res. Public Health 2022, 19, 11977. https://doi.org/10.3390/ijerph191911977
Krivonogova O, Krivonogova E, Poskotinova L. Time Estimation or Autonomic Heart Rate Regulation: Which Mechanism Is More Sensitive in the Development of Internet Addiction in Adolescents? International Journal of Environmental Research and Public Health. 2022; 19(19):11977. https://doi.org/10.3390/ijerph191911977
Chicago/Turabian StyleKrivonogova, Olga, Elena Krivonogova, and Liliya Poskotinova. 2022. "Time Estimation or Autonomic Heart Rate Regulation: Which Mechanism Is More Sensitive in the Development of Internet Addiction in Adolescents?" International Journal of Environmental Research and Public Health 19, no. 19: 11977. https://doi.org/10.3390/ijerph191911977
APA StyleKrivonogova, O., Krivonogova, E., & Poskotinova, L. (2022). Time Estimation or Autonomic Heart Rate Regulation: Which Mechanism Is More Sensitive in the Development of Internet Addiction in Adolescents? International Journal of Environmental Research and Public Health, 19(19), 11977. https://doi.org/10.3390/ijerph191911977