Solar UV Measured under Built-Shade in Public Parks: Findings from a Randomized Trial in Denver and Melbourne
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrolment of Passive Recreation Areas
2.2. Procedures
2.2.1. Treatment: Built-Shade
2.2.2. Solar UV Measurements
2.2.3. Observations of Environmental Conditions
2.3. Statistical Analysis
3. Results
3.1. Sample of SED Measurements
3.2. UV Exposure at PRAs during 30 Min Potential Usage
3.3. Confirmatory Linear Regression—UV of Shaded PRA versus Unshaded PRA Conditions by Test-Period with Environmental Predictors
3.4. UV of Shaded PRA Center versus PRA Boundary by Test-Period with Environmental Predictors
3.5. UV Exposure by Cloudy Skies and Solar Angle
3.6. UV Exposure by Shade Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. SED at Shaded PRAs Compared with Unshaded PRAS
- Figure A1. Unadjusted mean PRA center SED by study group at pretest and posttest: (a) during clear sky conditions; (b) during cloudy conditions.
- Table A1. Parameters estimated for the linear mixed model of SED during 30 min at the center of the PRAs (SEDC30) by test-period and intervention group.
- Table A2. Random effects.
- Table A3. Margins analysis.
- Table A4. Parameters estimated for the linear regression model of SED during 30 min at the center of the PRAs (SEDC30) by test-period and intervention group.
- Table A5. Parameters estimated for the linear regression model of SED during 30 min at the boundary of PRAs (SEDB30-approximating ambient SED) by test-period and intervention group.
Fixed Effect Variables | Coef. Estimate | Robust Std. Err. | z | P > (z) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
Strata—city and wave | ||||||
Melbourne-Wave 1 | Ref | |||||
Melbourne-Wave 2 | −0.001 | 0.076 | −0.01 | 0.991 | −0.15 | 0.15 |
Melbourne-Wave 3 | 0.118 | 0.090 | 1.31 | 0.189 | −0.06 | 0.30 |
Denver-Wave 1 | −0.084 | 0.076 | −1.09 | 0.274 | −0.23 | 0.07 |
Denver-Wave 2 | −0.072 | 0.064 | −1.11 | 0.266 | −0.20 | 0.05 |
Denver-Wave 3 | −0.144 | 0.082 | −1.75 | 0.080 | −0.31 | 0.02 |
Treatment group | ||||||
Shade | −0.101 | 0.163 | −0.62 | 0.535 | −0.42 | 0.22 |
Test-period | ||||||
Posttest | 0.194 | 0.130 | 1.49 | 0.136 | −0.06 | 0.45 |
Treatment group and test-period | ||||||
Shade-Posttest | −3.474 | 0.601 | −5.78 | 0.000 | −4.65 | −2.30 |
Cosine solar elevation angle (SEA) | ||||||
(continuous-degrees) | −0.266 | 0.216 | −1.23 | 0.218 | −0.69 | 0.16 |
Treatment group with cosine SEA | ||||||
Shade | 0.422 | 0.378 | 1.12 | 0.264 | −0.32 | 1.16 |
Treatment group and test-period with cosine SEA | ||||||
Control-Posttest | −0.431 | 0.284 | −1.52 | 0.129 | −0.99 | 0.13 |
Shade-Posttest | 2.885 | 1.025 | 2.81 | 0.005 | 0.88 | 4.89 |
Cloud (dummy variable) | ||||||
Cloud cover present | −0.078 | 0.047 | −1.64 | 0.100 | −0.17 | −0.02 |
Ambient (Boundary PRA) SEDs | ||||||
Sedb30 (continuous) | 0.869 | 0.020 | 42.41 | 0.000 | 0.83 | 0.91 |
Constant | ||||||
0.609 | 0.164 | 3.72 | 0.000 | 0.29 | 0.93 |
Random Effects Parameters | Estimate | Robust Std. Err. | 95% CI | |
---|---|---|---|---|
Parkidu: Identity | ||||
Var (_cons) | 0.0371745 | 0.010567 | 0.0212955 | 0.0648936 |
Var (Residual) | 0.3268697 | 0.0383334 | 0.2597471 | 0.4113378 |
Independent Variable Condition | Margin. (Predicted Value) | Delta-Method Std. Err. | z | P > (t) | 95% CI | |
---|---|---|---|---|---|---|
Pretest control | 3.10 | 0.028 | 108 | 0.000 | 2.97 | 3.08 |
Pretest shade | 3.12 | 0.031 | 100 | 0.000 | 3.06 | 3.18 |
Posttest control | 3.02 | 0.021 | 146 | 0.000 | 2.98 | 3.06 |
Posttest shade | 1.17 | 0.174 | 6.7 | 0.000 | 0.82 | 1.51 |
Independent Variables | Coef. Estimate | Robust Std. Err. | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
Strata—city and wave | ||||||
Melbourne-Wave 1 | Ref | |||||
Melbourne-Wave 2 | −0.005 | 0.125 | −0.04 | 0.967 | −0.25 | 0.24 |
Melbourne-Wave 3 | 0.224 | 0.164 | 1.37 | 0.172 | −0.10 | 0.54 |
Denver-Wave 1 | 0.337 | 0.119 | 2.83 | 0.005 | −0.10 | 0.57 |
Denver-Wave 2 | 0.034 | 0.118 | 0.29 | 0.772 | −0.20 | 0.27 |
Denver-Wave 3 | −0.035 | 0.131 | −0.27 | 0.790 | −0.29 | 0.22 |
Treatment group | ||||||
Shade | −0.001 | .511 | −0.00 | 0.999 | −1.00 | 1.00 |
Test-period | ||||||
Posttest | 0.707 | 0.404 | 1.75 | 0.081 | −0.09 | 1.50 |
Treatment group and test-period | ||||||
Shade-Posttest | −4.293 | 0.714 | −6.02 | 0.000 | −5.69 | −2.89 |
Cosine solar elevation angle (SEA) | ||||||
(continuous-degrees) | −1.825 | 2.790 | −0.65 | 0.513 | −7.30 | 3.65 |
Treatment group with cosine SEA | ||||||
Shade | 0.287 | 1.068 | 0.27 | 0.788 | −1.81 | 2.38 |
Treatment group and test-period with cosine SEA | ||||||
Control_Posttest | −1.677 | .781 | −2.15 | 0.032 | −3.21 | −0.15 |
Shade_Posttest | 2.750 | 1.253 | 2.20 | 0.028 | 0.29 | 5.21 |
Cloud conditions | ||||||
Cloud present | −3.736 | 0.949 | −3.94 | 0.000 | −5.60 | −1.87 |
Cloud conditions with cosine SEA | ||||||
Cloud cover present | 9.951 | 3.912 | 2.54 | 0.011 | 2.27 | 17.63 |
Cloud conditions with cosine SEA2 | ||||||
Clear skies | −4.088 | 2.844 | −1.44 | 0.151 | −9.67 | 1.49 |
Cloud cover present | −11.376 | 2.812 | −4.05 | 0.000 | −16.89 | −5.86 |
Constant | ||||||
5.356 | 0.671 | 7.99 | 0.000 | 4.04 | 6.67 |
Independent Variables | Coef. Estimate | Robust Std. Err. | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
Strata—city and wave | ||||||
Melbourne-Wave 1 | Ref | |||||
Melbourne-Wave 2 | −0.000 | 0.129 | −0.00 | 0.998 | −0.25 | 0.25 |
Melbourne-Wave 3 | 0.106 | 0.162 | 0.66 | 0.511 | −0.21 | 0.42 |
Denver-Wave 1 | 0.476 | 0.115 | 4.12 | 0.000 | 0.25 | 0.70 |
Denver-Wave 2 | 0.117 | 0.124 | 0.94 | 0.345 | −0.13 | 0.36 |
Denver-Wave 3 | 0.138 | 0.139 | 0.99 | 0.320 | −0.13 | 0.41 |
Treatment group | ||||||
Shade | 0.001 | 0.514 | 0.00 | 0.998 | −1.01 | 1.01 |
Test-period | ||||||
Posttest | 0.656 | 0.412 | 1.59 | 0.111 | −0.15 | 1.46 |
Treatment group and test-period | ||||||
Shade-Posttest | −0.780 | 0.786 | −0.99 | 0.321 | −2.32 | 0.76 |
Cosine solar elevation angle (SEA) | ||||||
(continuous-degrees) | −3.246 | 3.017 | −1.08 | 0.282 | −9.17 | 2.67 |
Treatment group with cosine SEA | ||||||
Shade | 0.128 | 1.083 | 0.12 | 0.906 | −2.00 | 2.25 |
Treatment group and test-period with cosine SEA | ||||||
Control_Posttest | −1.572 | 0.791 | −1.99 | 0.047 | −3.12 | −0.02 |
Shade_Posttest | −0.682 | 1.423 | −0.48 | 0.632 | −3.47 | 2.11 |
Cloud (dummy variable) | ||||||
Cloud cover present | −3.587 | 1.003 | −3.58 | 0.000 | −5.55 | −1.62 |
Cloud with cosine SEA | ||||||
Cloud cover present | 9.704 | 4.124 | 2.35 | 0.019 | 1.61 | 17.80 |
Cloud with cosine SEA2 | ||||||
Clear skies | −2.430 | 3.116 | −0.78 | 0.436 | −8.54 | 3.68 |
Cloud cover present | −9.967 | 2.973 | −3.35 | 0.001 | −15.80 | −4.13 |
Constant | ||||||
5.604 | 0.730 | 7.67 | 0.000 | 4.17 | 7.04 |
Independent Variable Condition | Margin. (Predicted Value) | Delta-Method Std. Err. | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
Melbourne | ||||||
Control pretest clear sky | 4.74 | 0.171 | 27.7 | 0.000 | 4.41 | 5.08 |
Control pretest cloud | 3.03 | 0.191 | 15.8 | 0.000 | 2.65 | 3.40 |
Control posttest clear sky | 5.03 | 0.231 | 21.8 | 0.000 | 4.58 | 5.49 |
Control posttest cloud sky | 3.32 | 0.239 | 13.9 | 0.000 | 2.85 | 3.79 |
Shade pretest clear sky | 4.81 | 0.254 | 18.9 | 0.000 | 4.31 | 5.31 |
Shade pretest cloud sky | 3.10 | 0.258 | 12.0 | 0.000 | 2.59 | 3.60 |
Shade posttest clear sky | 1.91 | 0.327 | 5.8 | 0.000 | 1.27 | 2.55 |
Shade posttest cloud sky | 0.19 | 0.295 | 0.7 | 0.514 | −0.39 | 0.77 |
Denver | ||||||
Control pretest clear sky | 4.61 | 0.137 | 33.7 | 0.000 | 4.35 | 4.88 |
Control pretest cloud | 3.09 | 0.153 | 20.3 | 0.000 | 2.79 | 3.39 |
Control posttest clear sky | 4.85 | 0.188 | 25.9 | 0.000 | 4.48 | 5.22 |
Control posttest cloud sky | 3.33 | 0.197 | 16.9 | 0.000 | 2.94 | 3.72 |
Shade pretest clear sky | 4.70 | 0.215 | 21.8 | 0.000 | 4.27 | 5.12 |
Shade pretest cloud sky | 3.17 | 0.216 | 14.7 | 0.000 | 2.75 | 3.60 |
Shade posttest clear sky | 1.88 | 0.281 | 6.7 | 0.000 | 1.33 | 2.43 |
Shade posttest cloud sky | 0.36 | 0.253 | 1.4 | 0.159 | −0.14 | 0.85 |
Appendix B. SED by PRA Shade Design Factors—Posttest only (Analysis Using SAS)
- B1. Model 1: All cloud observation conditions included, design variables for fixed effects include minht.
- B2. Model 2: Overcast observation conditions excluded, design variables for fixed effects include minht.
- B3. Model 3: Overcast observation conditions excluded, design variables for fixed effects include maxht.
Appendix B.1. Model 1: All Cloud Observation Conditions Included, Design Variables for Fixed Effects Include Minht
Fixed Effects Variables | No. DF | Den. DF. | F Value | P > F |
---|---|---|---|---|
Shade design type (final_design) | 2 | 33.2 | 0.65 | 0.53 |
Shade size (sqrt cloth area (m)-continuous) | 1 | 33.7 | 2.43 | 0.13 |
Minimum pole height (minht-continuous) | 1 | 32.7 | 0.00 | 0.98 |
Cosine solar elevation angle during PRA observation | 1 | 131 | 0.75 | 0.39 |
Cloud cover during PRA observation | 3 | 130 | 3.56 | 0.02 |
Fixed Effects Variables | Coef. Estimate | Std. Err. | Df | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|---|
Shade design type (final_design) | |||||||
1-Cantilever | 1.275 | 0.457 | 35.2 | 2.79 | 0.008 | 0.348 | 2.202 |
2-Hip (Referent) | 0.704 | 0.309 | 33.5 | 2.28 | 0.029 | 0.075 | 1.332 |
3-Shade Sail | 0.860 | 0.179 | 29.4 | 4.80 | <0.001 | 0.494 | 1.226 |
Shade size (sqrt shade cloth area (m)-continuous) | 0.151 | 0.097 | 33.7 | 1.56 | 0.128 | NR | NR |
Minimum pole height (minht-continuous) | 0.011 | 0.542 | 32.7 | 0.02 | 0.984 | NR | NR |
Cosine solar elevation during PRA observation | |||||||
(continuous-degrees) | −0.743 | 0.857 | 131 | −0.87 | 0.387 | NR | NR |
Cloud cover during PRA observation | |||||||
1-Clear sky (Referent) | 1.290 | 0.218 | 51.3 | 5.92 | <0.001 | 0.852 | 1.728 |
2-Thin high cloud | 1.243 | 0.265 | 84.9 | 4.69 | <0.001 | 0.716 | 1.770 |
3-Partly cloudy | 0.762 | 0.247 | 69.1 | 3.08 | 0.003 | 0.269 | 1.254 |
4-Overcast | 0.490 | 0.302 | 101 | 1.62 | 0.108 | −0.109 | 1.089 |
Intercept | |||||||
0.187 | 1.393 | 44 | 0.13 | 0.894 | NR | NR |
Variance for Parkidu | Estimate | Std. Err. | Z Value | Pr > Z |
---|---|---|---|---|
Identity matrix (constant) UN(1,1) | 0.252 | 0.141 | 1.79 | 0.037 |
Residual | 1.034 | 0.145 | 7.12 | <0.001 |
Appendix B.2. Model 2: Overcast Observation Conditions Excluded, Design Variables for Fixed Effects Include Minht
Fixed Effects Variables | No. DF | Den. DF. | F Value | P > F |
---|---|---|---|---|
Shade design type (final_design) | 2 | 23.2 | 0.36 | 0.70 |
Shade size (sqrt cloth area (m)-continuous) | 1 | 26.2 | 1.19 | 0.29 |
Minimum pole height (minht-continuous) | 1 | 23.4 | 0.02 | 0.89 |
Cosine solar elevation during PRA observation | 1 | 95.4 | 0.17 | 0.69 |
Cloud cover during PRA observation | 2 | 106 | 2.27 | 0.11 |
Fixed Effects Variables | Coef. Estimate | Std. Err. | df | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|---|
Shade design type (final_design) | |||||||
1-Cantilever | 1.281 | 0.519 | 25.2 | 2.47 | 0.021 | 0.213 | 2.349 |
2-Hip (Referent) | 0.789 | 0.340 | 22.5 | 2.32 | 0.030 | 0.085 | 1.493 |
3-Shade Sail | 0.974 | 0.233 | 21.7 | 4.17 | <0.001 | 0.490 | 1.458 |
Shade size (sqrt shade cloth area (m)-continuous) | 0.127 | 0.117 | 26.2 | 1.09 | 0.286 | NR | NR |
Minimum pole height (minht-continuous) | 0.089 | 0.638 | 23.4 | 0.14 | 0.890 | NR | NR |
Cosine solar elevation angle during PRA observation | |||||||
(continuous-degrees) | −0.387 | 0.952 | 95.4 | −0.41 | 0.686 | NR | NR |
Cloud cover during PRA observation | |||||||
1-Clear sky (Referent) | 1.229 | 0.235 | 37.6 | 5.24 | <0.001 | 0.754 | 1.704 |
2-Thin high cloud | 1.111 | 0.279 | 63.3 | 3.98 | <0.001 | 0.553 | 1.669 |
3-Partly cloudy | 0.704 | 0.260 | 51.2 | 2.71 | 0.009 | 0.182 | 1.226 |
Intercept | |||||||
−0.045 | 1.619 | 32 | −0.03 | 0.978 | NR | NR |
Variance for Parkidu | Estimate | Std. Err. | Z Value | Pr > Z |
---|---|---|---|---|
Identity matrix (constant) UN(1,1) | 0.441 | 0.235 | 1.88 | 0.030 |
Residual | 1.025 | 0.168 | 6.09 | <0.001 |
Appendix B.3. Model 3: Overcast Observation Conditions Excluded, Design Variables for Fixed Effects Include Maxht
Fixed Effects Variables | No. DF | Den. DF. | F Value | P > F |
---|---|---|---|---|
Shade design type (final_design) | 2 | 23.0 | 0.60 | 0.56 |
Shade size (sqrt cloth area (m)-continuous) | 1 | 24.2 | 1.79 | 0.19 |
Maximum pole height (maxht-continuous) | 1 | 21.4 | 0.18 | 0.67 |
Cosine solar elevation during PRA observation | 1 | 103 | 0.21 | 0.65 |
Cloud cover during PRA observation | 2 | 106 | 2.24 | 0.11 |
Fixed Effects Variables | Coef. Estimate | Std. Err. | df | t | P > (t) | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|---|
Shade design type (final_design) | |||||||
1-Cantilever | 1.306 | 0.518 | 25 | 2.52 | 0.018 | 0.239 | 2.374 |
2-Hip (Referent) | 0.712 | 0.329 | 21.5 | 2.17 | 0.042 | 0.030 | 1.395 |
3-Shade Sail | 1.004 | 0.229 | 22.7 | 4.38 | <0.001 | 0.530 | 1.479 |
Shade size (sqrt shade cloth area (m)-continuous) | 0.179 | 0.134 | 24.2 | 1.34 | 0.193 | NR | NR |
Maximum pole height (maxht-continuous) | −0.091 | 0.212 | 21.4 | −0.43 | 0.672 | NR | NR |
Cosine solar elevation during PRA observation | |||||||
(continuous-degrees) | −0.424 | 0.929 | 103 | −0.46 | 0.649 | NR | NR |
Cloud cover during PRA observation | |||||||
1-Clear sky (Referent) | 1.225 | 0.234 | 36.5 | 5.23 | <0.001 | 0.751 | 1.700 |
2-Thin high cloud | 1.095 | 0.278 | 62.2 | 3.94 | <0.001 | 0.540 | 1.650 |
3-Partly cloudy | 0.702 | 0.258 | 51.5 | 2.72 | 0.009 | 0.184 | 1.221 |
Intercept | |||||||
0.175 | 0.767 | 39 | 0.23 | 0.821 | NR | NR |
Variance for Parkidu | Estimate | Std. Err. | Z Value | Pr > Z |
---|---|---|---|---|
Identity matrix (constant) UN(1,1) | 0.437 | 0.234 | 1.87 | 0.031 |
Residual | 1.025 | 0.168 | 6.09 | <0.001 |
References
- Pöppinghaus, H. Shade Design in Spain: How to Protect Against Heat and UV-Radiation. In Proceedings of the Structural Membranes: V International Conference on Textile Composites and Inflatable Structures (MEMBRANES 2011), Barcelona, Spain, 5–7 October 2011; Oñate, E., Kröplin, B., Bletzinger, K.-U., Eds.; © CIMNE: Barcelona, Spain, 2011; p. 10. Available online: https://upcommons.upc.edu/bitstream/handle/2117/186051/MEMBRANES_2011-22_Shade%20design%20in%20Spain.pdf (accessed on 20 July 2021).
- Mackay, C. Sun-Shading at the Water’s Edge; NIWA: Wellington, New Zealand, 2018; Available online: www.niwa.co.nz/atmosphere/uv-ozone/uv-science-workshops/2018-uv-workshop (accessed on 17 April 2021).
- Bloch, S. Shade. Places J. 2019. [Google Scholar] [CrossRef]
- Gies, P.; Roy, C.; Udelhofen, P. Solar and Ultraviolet Radiation. In Prevention of Skin Cancer; Kluwer Academic Publishers: Alphen, The Netherlands, 2004. [Google Scholar]
- NASA Earth Observatory. Ultraviolet Radiation: How It Affects Life on Earth. 2001. Available online: https://earthobservatory.nasa.gov/features/UVB (accessed on 20 July 2021).
- World Health Organisation. Radiation: Ultraviolet (UV) Radiation. 2016. Available online: https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv) (accessed on 20 July 2021).
- Lucas, R.; McMichael, T.; Smith, W.; Armstrong, B.K.; Prüss-Üstün, A.; World Health Organization. Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation; World Health Organization: Geneva, Switzerland, 2006; Available online: https://apps.who.int/iris/handle/10665/43505 (accessed on 19 July 2021).
- Yam, J.C.S.; Kwok, A.K.H. Ultraviolet light and ocular diseases. Int. Ophthalmol. 2013, 34, 383–400. [Google Scholar] [CrossRef]
- Norval, M.; Lucas, R.M.; Cullen, A.P.; de Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; van der Leun, J.C. The human health effects of ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 2011, 10, 199–225. [Google Scholar] [CrossRef]
- Behar-Cohen, F.; Baillet, G.; de Ayguavives, T.; Krutmann, J.; Peña-García, P.; Reme, C.; Wolffsohn, J.S.; García, P.O. Ultraviolet damage to the eye revisited: Eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin. Ophthalmol. 2013, 8, 87–104. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Solar and Ultraviolet Radiation; International Agency for Research on Cancer: Lyon, France, 1992.
- Arnold, M.; De Vries, E.; Whiteman, D.C.; Jemal, A.; Bray, F.; Parkin, D.M.; Soerjomataram, I. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int. J. Cancer 2018, 143, 1305–1314. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Estimated Age-Standarized Incidence Rates (WORLD) in 2020, Melanoma of Skin, both Sexes, All Ages; GLOBOCAN 2020 Graphic; World Health Organisation: Lyon, France, 2020; Available online: https://gco.iarc.fr/today/online (accessed on 10 April 2021).
- American Cancer Society. Cancer Facts & Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021; Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf (accessed on 3 October 2021).
- Tripp, M.K.; Watson, M.; Balk, S.J.; Swetter, S.M.; Gershenwald, J.E.; Tripp, M.M.K.; Mph, M.W. State of the science on prevention and screening to reduce melanoma incidence and mortality: The time is now. CA Cancer J. Clin. 2016, 66, 460–480. [Google Scholar] [CrossRef]
- Hill, D.; Dobbinson, S.; Makin, J.K. Interventions to lower ultraviolet radiation exposure: Education, legislation, and public policy. In ASCO 2009 Education Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2009; pp. 526–531. [Google Scholar]
- De Blasio, B. Healthier neighbourhoods through healthier parks. Lancet 2016, 388, 2850–2851. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Tucker, P.; Gilliland, J.; Irwin, J.D. Splashpads, Swings, and Shade: Parents’ preferences for neighbourhood parks. Can. J. Public Health 2007, 98, 198–202. [Google Scholar] [CrossRef]
- Veitch, J.; Bagley, S.; Ball, K.; Salmon, J. Where do children usually play? A qualitative study of parents’ perceptions of influences on children’s active free-play. Health Place 2006, 12, 383–393. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Cancer A-Z: How Do I Protect Myself from Ultraviolet (UV) Rays? 2019. Available online: https://www.cancer.org/healthy/be-safe-in-sun/uv-protection.html (accessed on 10 April 2021).
- World Health Organisation. Health Consequences of Excessive Solar UV Radiation; News; World Health Organisation: Geneva, Switzerland, 2020; Available online: https://www.who.int/news/item/25-07-2006-health-consequences-of-excessive-solar-uv-radiation (accessed on 21 July 2021).
- Gies, P.; Elix, R.; Lawry, D.; Gardner, J.; Hancock, T.; Cockerell, S.; Roy, C.; Javorniczky, J.; Henderson, S. Assessment of the UVR Protection Provided by Different Tree Species. Photochem. Photobiol. 2007, 83, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.; Livesley, S.J.; Aye, L. Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build. Environ. 2013, 69, 91–100. [Google Scholar] [CrossRef]
- Zarr, R.; Conway, T. What About the Trees? Trees as Nature-Based “Shade Sails”. Am. J. Public Health 2017, 107, 1876–1877. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, J.; Wang, Z.-H.; Wentz, E.A. Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ. Urban Sci. 2018, 2, 4. [Google Scholar] [CrossRef]
- Vanos, J.K.; Middel, A.; McKercher, G.R.; Kuras, E.R.; Ruddell, B.L. Hot playgrounds and children’s health: A multiscale analysis of surface temperatures in Arizona, USA. Landsc. Urban Plan. 2016, 146, 29–42. [Google Scholar] [CrossRef]
- Mounce, J. The Power of One Tree: The Very Air We Breathe; U.S. Forest Service in Forestry, United States Department of Agriculture (USDA): Washington, DC, USA, 2019. Available online: https://www.usda.gov/media/blog/2015/03/17/power-one-tree-very-air-we-breathe (accessed on 20 July 2021).
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Mackay, C.A.; Donn, M. Sunshade Practice in New Zealand Primary Schools; Royal Society of New Zealand: Christchurch, New Zealand, 2002; Available online: https://niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Mackay.pdf (accessed on 23 April 2021).
- Buller, D.B.; English, D.R.; Buller, M.K.; Simmons, J.; Chamberlain, J.A.; Wakefield, M.; Dobbinson, S. Shade Sails and Passive Recreation in Public Parks of Melbourne and Denver: A Randomized Intervention. Am. J. Public Health 2017, 107, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.V.; Turnbull, D.J. Shade Provision for UV Minimization: A Review. Photochem. Photobiol. 2014, 90, 479–490. [Google Scholar] [CrossRef]
- Gies, P.; Mackay, C. Measurements of the Solar UVR Protection Provided by Shade Structures in New Zealand Primary Schools. Photochem. Photobiol. 2004, 80, 334–339. [Google Scholar] [CrossRef]
- Armstrong, B.K.; Cust, A. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420–427. Cancer Epidemiol. 2017, 48, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Buller, D.B.; Dobbinson, S.; English, D.R.; Wakefield, M.; Buller, M.K. Rationale, design, and baseline data of a cross-national randomized trial on the effect of built shade in public parks for sun protection. Contemp. Clin. Trials 2017, 55, 47–55. [Google Scholar] [CrossRef]
- Dobbinson, S.; Niven, P.; Buller, D.; Allen, M.; Gies, P.; Warne, C. Comparing Handheld Meters and Electronic Dosimeters for Measuring Ultraviolet Levels under Shade and in the Sun. Photochem. Photobiol. 2015, 92, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, M.D.P.; Godin-Beekmann, S.; Haeffelin, M.; Brogniez, C.; Verschaeve, F.; Saiag, P.; Pazmiño, A.; Mahé, E. Comparison between UV index measurements performed by research-grade and consumer-products instruments. Photochem. Photobiol. Sci. 2010, 9, 459–463. [Google Scholar] [CrossRef]
- Gies, P.; Makin, J.; Dobbinson, S.; Javorniczky, J.; Henderson, S.; Guilfoyle, R.; Lock, J. Shade Provision for Toddlers at Swimming Pools in Melbourne. Photochem. Photobiol. 2013, 89, 968–973. [Google Scholar] [CrossRef]
- NOAA Global Monitoring Laboratory Earth System Research Laboratories. NOAA Solar Calculator: Find Sunrise, Sunset, Solar Noon and Solar Position for Any Place on Earth. Available online: https://gml.noaa.gov/grad/solcalc/ (accessed on 20 July 2021).
- Webb, A.R.; Slaper, H.; Koepke, P.; Schmalwieser, A.W. Know your standard: Clarifying the CIE erythema action spectrum. Photochem. Photobiol. 2010, 87, 483–486. [Google Scholar] [CrossRef]
- Fitzpatrick, T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988, 124, 869–871. [Google Scholar] [CrossRef]
- Parsons, P.G.; Neale, R.; Wolski, P.; Green, A. The shady side of solar protection. Med. J. Aust. 1998, 168, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, D.J.; Parisi, A.V.; Sabburg, J. Scattered UV Beneath Public Shade Structures During Winter. Photochem. Photobiol. 2003, 78, 180–183. [Google Scholar] [CrossRef]
- Turner, J.; Parisi, A.V. Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings. Int. J. Environ. Res. Public Health 2018, 15, 1507. [Google Scholar] [CrossRef]
- Vanos, J.K.; McKercher, G.R.; Naughton, K.; Lochbaum, M. Schoolyard Shade and Sun Exposure: Assessment of Personal Monitoring during Children’s Physical Activity. Photochem. Photobiol. 2017, 93, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Fiessler, C.; Pfahlberg, A.B.; Uter, W.; Gefeller, O. Shedding Light on the Shade: How Nurseries Protect Their Children from Ultraviolet Radiation. Int. J. Environ. Res. Public Health 2018, 15, 1793. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.M.; Kapelos, G.T.; Shoemaker, M.; Watson, M. Shade as an Environmental Design Tool for Skin Cancer Prevention. Am. J. Public Health 2018, 108, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Dobbinson, S.J.; White, V.; Wakefield, M.A.; Jamsen, K.M.; Livingston, P.M.; English, D.; Simpson, J.A. Adolescents’ use of purpose built shade in secondary schools: Cluster randomised controlled trial. BMJ 2009, 338, b95. [Google Scholar] [CrossRef]
- Dobbinson, S.; Jamsen, K.; McLeod, K.; White, V.; Wakefield, M.; White, V.; Livingston, P.; Simpson, J.A. Maximising students’ use of purpose-built shade in secondary schools: Quantitative and qualitative results of a built-environment intervention. Health Place 2014, 26, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Dobbinson, S.; Simmons, J.; Chamberlain, J.; MacInnis, R.; Salmon, J.; Staiger, P.; Wakefield, M.; Veitch, J. Examining Health-Related Effects of Refurbishment to Parks in a Lower Socioeconomic Area: The ShadePlus Natural Experiment. Int. J. Environ. Res. Public Health 2020, 17, 6102. [Google Scholar] [CrossRef]
- Opene, C.; Chren, M.-M.; Linos, E. Types of Shade Vary in Protection Just Like Sunscreens. JAMA Dermatol. 2017, 153, 1070–1071. [Google Scholar] [CrossRef]
- Linos, E.; Keiser, E.; Fu, T.; Colditz, G.; Chen, S.; Tang, J.Y. Hat, shade, long sleeves, or sunscreen? Rethinking US sun protection messages based on their relative effectiveness. Cancer Causes Control 2011, 22, 1067–1071. [Google Scholar] [CrossRef]
- Dobbinson, S.; Wakefield, M.; Hill, D.; Girgis, A.; Aitken, J.; Beckmann, K.; Reeder, A.I.; Herd, N.; Fairthorne, A.; Bowles, K.-A. Prevalence and determinants of Australian adolescents’ and adults’ weekend sun protection and sunburn, summer 2003–2004. J. Am. Acad. Dermatol. 2008, 59, 602–614. [Google Scholar] [CrossRef]
- McWilliam, W.; Wesener, A.; Sukumar, A.; Brown, R. Reducing the Incidence of Skin Cancer through Landscape Architecture Design Education. Sustainability 2020, 12, 9402. [Google Scholar] [CrossRef]
Measurement Conditions | Denver | Melbourne | Treatment | Control | Pretest | Posttest | Total |
---|---|---|---|---|---|---|---|
N = 576 | N = 568 | N = 284 | N = 860 | N = 571 | N = 573 | N = 1144 | |
Clear skies | 41.5% | 19.0% | 34.2% | 29.1% | 28.6% | 32.1% | 30.3% |
Cloud present | 58.5% | 81.0% | 65.9% | 70.9% | 71.5% | 67.9% | 69.7% |
Minutes to solar noon 1 | −36.3 (69.0) | −47.1 (60.4) | −33.1 (67.6) | −44.5 (64.0) | −42.4 (63.8) | −41.0 (66.4) | −41.6 (65.1) |
Days to summer solstice | 38.1 (26.6) | 40.0 (26.3) | 39.5 (27.4) | 38.9 (26.2) | 28.6 (22.0) | 49.4 (26.4) | 39.0 (26.5) |
Measurement | Pretest | Posttest | |||
---|---|---|---|---|---|
Location | N | Treatment PRAs 1 (N = 36 PRAs) | Control PRAs (N = 108 PRAs) | Treatment PRAs 2 (N = 36 PRAs) | Control PRAs (N = 108 PRAs) |
PRA Center | 1144 | 3.39 (1.32) | 3.21 (1.38) | 0.93 (1.18) | 2.85 (1.36) |
PRA Boundary | 1144 | 3.34 (1.35) | 3.22 (1.38) | 2.59 (1.46) | 2.86 (1.34) |
PRA Shade Design Type | Denver | Melbourne | Overall | |||||
---|---|---|---|---|---|---|---|---|
Clear Sky | Cloud Present | Clear Sky | Cloud Present | |||||
No. Obs. | PRA Center | PRA Center | PRA Center | PRA Center | PRA Center | PRA Boundary | PRA Center | |
SED Mean (SD) | SED Mean (SD) | SED Mean (SD) | SED Mean (SD) | SED Mean (SD) | SED Mean (SD) | SPF (SD) | ||
Overall shaded PRAs | 142 | 0.9 (1.1) | 0.5 (0.5) | 1.4 (1.7) | 1.1 (1.3) | 0.9 (1.2) | 2.6 (1.5) | 7.4 (14.4) |
Shade design | ||||||||
Cantilever Hip and ridge a | 15 35 | 1.2 (0.8) 0.9 (1.4) | 0.5 (0.1) 0.3 (0.3) | -- -- | -- -- | 1.0 (0.8) 0.6 (1.0) | 2.8 (0.9) 3.0 (1.0) | 4.2 (2.0) 15.6 (25.3) |
Shade sail | 92 | 0.7 (0.9) | 0.8 (0.9) | 1.4 (1.7) | 1.1 (1.3) | 1.1 (1.3) | 2.4 (1.6) | 4.7 (6.6) |
Shade cloth color | ||||||||
Dark | 122 | 0.9 (1.1) | 0.5 (0.5) | 1.2 (1.7) | 1.0 (1.2) | 0.9 (1.1) | 2.7 (1.4) | 8.2 (15.4) |
Light | 20 | -- | -- | 2.2 (1.7) | 1.2 (1.4) | 1.4 (1.5) | 2.2 (1.7) | 2.7 (2.8) |
Shade cloth size, m2 | ||||||||
20–35 | 42 | 1.1 (1.1) | 0.5 (0.6) | -- | -- | 0.7 (0.9) | 3.1 (1.1) | 9.4 (6.9) |
35–80 | 24 | 0.6 (0.8) | 0.4 (0.4) | -- | -- | 0.5 (0.6) | 3.2 (1.1) | 17.2 (32.1) |
≥81 | 76 | 1.6 (2.3) | 1.5 b | 1.4 (1.7) | 1.1 (1.3) | 1.2 (1.4) | 2.1 (1.6) | 3.3 (3.1) |
Shade cloth entry height, m | ||||||||
<3.0 | 20 | 0.9 (1.4) | 0.5 (0.7) | -- | -- | 0.6 (0.8) | 3.2 (1.0) | 16.7 (33.3) |
≥3.0 | 122 | 0.9 (1.1) | 0.4 (0.4) | 1.4 (1.7) | 1.1 (1.3) | 1.0 (1.2) | 2.5 (1.5) | 5.8 (7.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobbinson, S.J.; Buller, D.B.; Chamberlain, J.A.; Simmons, J.; Buller, M.K. Solar UV Measured under Built-Shade in Public Parks: Findings from a Randomized Trial in Denver and Melbourne. Int. J. Environ. Res. Public Health 2022, 19, 10583. https://doi.org/10.3390/ijerph191710583
Dobbinson SJ, Buller DB, Chamberlain JA, Simmons J, Buller MK. Solar UV Measured under Built-Shade in Public Parks: Findings from a Randomized Trial in Denver and Melbourne. International Journal of Environmental Research and Public Health. 2022; 19(17):10583. https://doi.org/10.3390/ijerph191710583
Chicago/Turabian StyleDobbinson, Suzanne Jane, David Bard Buller, James Andrew Chamberlain, Jody Simmons, and Mary Klein Buller. 2022. "Solar UV Measured under Built-Shade in Public Parks: Findings from a Randomized Trial in Denver and Melbourne" International Journal of Environmental Research and Public Health 19, no. 17: 10583. https://doi.org/10.3390/ijerph191710583
APA StyleDobbinson, S. J., Buller, D. B., Chamberlain, J. A., Simmons, J., & Buller, M. K. (2022). Solar UV Measured under Built-Shade in Public Parks: Findings from a Randomized Trial in Denver and Melbourne. International Journal of Environmental Research and Public Health, 19(17), 10583. https://doi.org/10.3390/ijerph191710583