Uncertainty and Well-Being amongst Homeworkers in the COVID-19 Pandemic: A Longitudinal Study of University Staff
Abstract
:1. Introduction
“I worked and completed many things [this week] but the very feeling of being confined at home and the uncertainty surrounding everything distracted me a lot and I felt down much of the time”. University employee, a respondent to a survey on home working in the pandemic.
2. Assessing Uncertainty
2.1. Uncertainty
2.2. Uncertainty and Well-Being
- Research Question 1: What is the ranking of the unique contribution of each type of uncertainty to well-being.
3. Methodology
3.1. The Study
3.2. The Sample
4. Measures
4.1. Uncertainty
4.2. Well-Being
4.3. Control Variables
5. Analysis Approach
6. Results
6.1. The Uncertainty Scales and Descriptive Data
6.2. Testing Hypothesis 1
6.3. Testing Hypothesis 2
6.4. Testing Hypothesis 3
6.5. Testing Research Question 1
7. Discussion
7.1. Overview
7.2. Strengths, Limitations and Future Research
7.3. Practical Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieira, K.M.; Potrich, A.C.G.; Bressan, A.A.; Klein, L.L.; Pereira, B.A.D.; Pinto, N.G.M. A Pandemic Risk Perception Scale. Risk Anal. 2021, 42, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Charoensukmongkol, P.; Phungsoonthorn, T. The effectiveness of supervisor support in lessening perceived uncertainties and emotional exhaustion of university employees during the COVID-19 crisis: The constraining role of organizational intransigence. J. Gen. Psychol. 2020, 148, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Han, P.K.; Klein, W.M.; Arora, N.K. Varieties of uncertainty in health care: A conceptual taxonomy. Med. Decis. Mak. 2011, 31, 828–838. [Google Scholar] [CrossRef]
- Anderson, E.C.; Carleton, R.N.; Diefenbach, M.; Han, P.K. The relationship between uncertainty and affect. Front. Psychol. 2019, 10, 2504. [Google Scholar] [CrossRef]
- Mishel, M.H. The measurement of Uncertainty in Illness. Nurs. Res. 1981, 30, 258–283. [Google Scholar] [CrossRef]
- Demerouti, E.; Bakker, A.B.; Nachreiner, F.; Schaufeli, W.B. The job demands-resources model of burnout. J. Appl. Psychol. 2001, 86, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Geurts SA, E.; Krompier MA, J.; Roxburgh, S.; Houtman IL, D. Does work–home interference mediate the relationship between workload and well-being? J. Vocat. Behav. 2003, 63, 532–559. [Google Scholar] [CrossRef]
- Kaftan, O.J.; Freund, A.M. The way is the goal: The role of goal focus for successful goal pursuit and subjective well-being. In Handbook of Well-Being; Diener, E., Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Wood, S.; Michaelides, G.; Totterdell, P. The impact of fluctuating workloads on wellbeing and the mediating role of work–non-work interference in the relationship. J. Occup. Health Psychol. 2013, 18, 106–119. [Google Scholar] [CrossRef]
- Lazarus, R.S. Emotion and Adaptation; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Smith, C.A.; Lazarus, R.S. Appraisal Components, Core Relational Themes and the Emotions. Cogn. Emot. 2003, 7, 233–269. [Google Scholar] [CrossRef]
- Power, M.; Dalgleish, T. Cognition and Emotion: From Order to Disorder, 2nd ed.; Psychology Press: Hove, UK; New York, NY, USA, 2008. [Google Scholar]
- Miller, S.M. Controllability and human stress: Method, evidence and theory. Behav. Res. Ther. 1979, 17, 287–304. [Google Scholar] [CrossRef]
- Pekrun, R.; Frese, M. Emotions in work and achievement. In International Review of Industrial and Organizational Psychology; Cooper, C.L., Robertson, I.T., Eds.; Wiley: New York, NY, USA, 1992; Volume VII, pp. 153–200. [Google Scholar]
- Russell, J. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Grupe, D.W.; Nitschk, J.B. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 2013, 14, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Barbaranelli, C.; Roberta Fida, R.; Marinella Paciello, M.; Tramontano, C. ‘Possunt, quia posse videntur’: They can because they think they can. Development and validation of the Work Self-Efficacy scale: Evidence from two studies. J. Vocat. Behav. 2018, 106, 249–269. [Google Scholar] [CrossRef]
- Chandler-Jeanville, S.; Nohra, R.G.; Loizeau, V.; Lartigue-Malgouyres, C.; Zintchem, R.; Naudin, D.; Rothan-Tondeur, M. Perceptions and Experiences of the COVID-19 Pandemic amongst Frontline Nurses and Their Relatives in France in Six Paradoxes: A Qualitative Study. Int. J. Environ. Res. Public Health 2021, 18, 6977. [Google Scholar] [CrossRef] [PubMed]
- Dalgleish, T.; Watts, F.N. Biases of attention and memory in disorders of anxiety and depression. Clin. Psychol. Rev. 1990, 10, 589–604. [Google Scholar] [CrossRef]
- Williams, J.M.G.; Mathews, A.; MacLeod, C. The emotional Stroop task and psychopathology. Psychol. Bull. 1996, 120, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Golden, T.D. The role of relationships in understanding telecommuter satisfaction. J. Organ. Behav. 2006, 27, 319–334. [Google Scholar] [CrossRef]
- Warr, P. The measurement of well-being and other aspects of mental health. J. Occup. Psychol. 1990, 63, 193–210. [Google Scholar] [CrossRef]
- Stadler, M.; Helena, D.; Cooper-Thomas, H.; Greif, S. A primer on relative importance analysis: Illustrations of its utility for psychological research. Psychol. Test Assess. Modeling 2017, 59, 381–403. [Google Scholar]
- Tonidandel, S.; LeBreton, J.M. Relative importance analysis: A useful supplement to regression analysis. J. Bus. Psychol. 2011, 26, 1–9. [Google Scholar] [CrossRef]
- LeBreton, J.M.; Tonidandel, S.; Krasikova, D.V. Residualized relative importance analysis: A technique for the comprehensive decomposition of variance in higher order regression models. Organ. Res. Methods 2013, 16, 449–473. [Google Scholar] [CrossRef]
- R Core Team; R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 30 June 2022).
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. Available online: https://www.jstatsoft.org/v48/i02/ (accessed on 30 June 2022). [CrossRef] [Green Version]
- Chan, M. rwa: Perform a Relative Weights Analysis. R Package Version 0.0.3. 2020. Available online: https://CRAN.R-project.org/package=rwa (accessed on 30 June 2022).
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Siemsen, E.; Roth, A.; Oliveira, P. Common method bias in regression models with linear, quadratic, and interaction effects. Organ. Res. Methods 2010, 13, 456–476. [Google Scholar] [CrossRef]
- Mischel, W. The interaction of person and situation. In Personality at the Cross-Roads: Current Issues in Interactional Psychology; Magnusson, D., Endler, N.S., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 1977; pp. 333–352. [Google Scholar]
- Nayani, R.; Baric, M.; Patey, J.; Fitzhugh, H.; Watson, D.; Tregaskis, O.; Daniels, K. Authenticity in the Pursuit of Mutuality During Crisis. Br. J. Manag. 2022, 33, 1144–1162. [Google Scholar] [CrossRef]
- Daniels, K.; Tregaskis, O.; Nayani, R.; Watson, D. Achieving Sustainable Workplace Wellbeing; Springer: New York, NY, USA, 2022. [Google Scholar]
- Richter, M.; König, C.; Koppermann, C.; Schilling, M. Displaying Fairness While Delivering Bad News: Testing the Effectiveness of Organizational Bad News Training in the Layoff Context. J. Appl. Psychol. 2016, 101, 779–792. [Google Scholar] [CrossRef]
- Slemp, G.R.; Kern, M.L.; Vella-Brodrick, D.A. Workplace Well-Being: The Role of Job Crafting and Autonomy Support. Psychol. Well-Being 2015, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Tims, M.; Bakker, B.A.; Derks, D. The impact of job crafting on job demands, job resources, and well-being. J. Occup. Health Psychol. 2013, 18, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Oprea, B.T.; Barzin, L.; Vîrgă, D.; Iliescu, D.; Rusu, A. Effectiveness of job crafting interventions: A meta-analysis and utility analysis. Eur. J. Work. Organ. Psychol. 2019, 28, 723–741. [Google Scholar] [CrossRef]
Thinking about the Coming Months, How Certain or Uncertain Do You Feel about the Following? | July 2020 | October 2020 | February 2021 |
---|---|---|---|
Job Uncertainty | |||
What my job is going to involve | 1.00 | 1.00 | 1.00 |
What tasks I will be expected to prioritise | 1.02 | 0.99 | 1.05 |
How secure my job will be | 0.67 | 0.75 | 0.71 |
Workload Uncertainty | |||
How hard I will be required to work to get my job done | 1.00 | 1.00 | 1.00 |
The amount of hours I will need to work to complete my work tasks | 1.00 | 0.94 | 1.09 |
The extent to which I will be asked to do an excessive amount of work | 0.80 | 0.83 | 0.92 |
Logistics Uncertainty | |||
What proportion of my work time I will work at home | 1.00 | 1.00 | 1.00 |
What proportion of my work time I will work on campus | 0.93 | 0.98 | 1.02 |
Whether I will be able to balance work and non–work responsibilities | 1.08 | 1.09 | 1.03 |
Support Uncertainty | |||
Whether I will be provided access to the equipment and services I need in order to do my job (e.g., IT hardware and software, IT support) | 1.00 | 1.00 | 1.00 |
Whether the University will support my well-being | 1.06 | 1.44 | 1.42 |
Whether the University will protect my personal safety while at work | 0.84 | 1.19 | 1.16 |
Virus Uncertainty | |||
How the pandemic is likely to progress | 1.00 | 1.00 | 1.00 |
How to judge how safe venues such as shops, pub and restaurants are | 1.28 | 1.09 | 1.18 |
Whether the government will swiftly detect fresh outbreaks of COVID-19 cases | 1.05 | 0.93 | 1.09 |
X2 | df | ΔX2 | CFI | TLI | Gamma Hat | RMSEA | SRMR | |
---|---|---|---|---|---|---|---|---|
July 2020 | ||||||||
Five-factor model | 324.53 | 79 | 0.95 | 0.93 | 0.77 | 0.07 | 0.05 | |
Single-factor model | 1425.29 | 89 | 1100.76 *** | 0.72 | 0.66 | 0.95 | 0.16 | 0.11 |
October 2020 | ||||||||
Five-factor model | 263.96 | 79 | 0.94 | 0.92 | 0.76 | 0.08 | 0.06 | |
Single-factor model | 1009.97 | 89 | 746.01 *** | 0.70 | 0.64 | 0.94 | 0.16 | 0.10 |
February 2021 | ||||||||
Five-factor model | 214.59 | 79 | 0.96 | 0.94 | 0.78 | 0.07 | 0.05 | |
Single-factor model | 928.20 | 89 | 713.61 *** | 0.74 | 0.69 | 0.96 | 0.16 | 0.11 |
Invariance models | ||||||||
Configural | 803.07 | 237 | 0.95 | 0.93 | 0.94 | 0.07 | 0.05 | |
Metric | 832.00 | 257 | 28.93 | 0.95 | 0.94 | 0.95 | 0.07 | 0.06 |
Scalar | 894.36 | 277 | 62.36 *** | 0.94 | 0.93 | 0.94 | 0.07 | 0.06 |
M | SD | α | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Anxiety–Contentment—July | 3.12 | 0.81 | 0.88 | ||||||||||||||||||||
2. Depression–Enthusiasm—July | 3.58 | 0.76 | 0.88 | 0.73 | |||||||||||||||||||
3. Virus Uncertainty —July | 5.98 | 1.43 | 0.74 | −0.29 | −0.22 | ||||||||||||||||||
4. Job Uncertainty—July | 4.41 | 1.77 | 0.84 | −0.30 | −0.35 | 0.32 | |||||||||||||||||
5. Workload Uncertainty—July | 3.59 | 1.81 | 0.82 | −0.23 | −0.30 | 0.27 | 0.70 | ||||||||||||||||
6. Logistics Uncertainty—July | 4.58 | 1.88 | 0.73 | 0.17 | 0.23 | −0.27 | −0.48 | −0.54 | |||||||||||||||
7. Support Uncertainty—July | 3.41 | 1.58 | 0.74 | −0.27 | −0.29 | 0.36 | 0.41 | 0.39 | −0.46 | ||||||||||||||
8. Anxiety–Contentment—Oct | 3.03 | 0.83 | 0.88 | 0.66 | 0.59 | −0.26 | −0.36 | −0.26 | 0.21 | −0.35 | |||||||||||||
9. Depression–Enthusiasm—Oct | 3.51 | 0.77 | 0.84 | 0.53 | 0.67 | −0.25 | −0.29 | −0.25 | 0.22 | −0.32 | 0.76 | ||||||||||||
10. Virus Uncertainty—Oct | 5.81 | 1.47 | 0.72 | −0.22 | −0.15 | 0.59 | 0.29 | 0.29 | −0.25 | 0.29 | −0.29 | −0.27 | |||||||||||
11. Job Uncertainty—Oct | 4.33 | 1.85 | 0.84 | −0.29 | −0.33 | 0.32 | 0.65 | 0.45 | −0.34 | 0.33 | −0.41 | −0.38 | 0.41 | ||||||||||
12. Workload Uncertainty—Oct | 3.32 | 1.73 | 0.86 | −0.17 | −0.28 | 0.25 | 0.53 | 0.57 | −0.30 | 0.34 | −0.28 | −0.30 | 0.34 | 0.71 | |||||||||
13. Logistics Uncertainty—Oct | 5.23 | 1.87 | 0.72 | 0.15 | 0.17 | −0.29 | −0.37 | −0.35 | 0.52 | −0.39 | 0.27 | 0.29 | −0.37 | −0.49 | −0.42 | ||||||||
14. Support Uncertainty—Oct | 3.43 | 1.69 | 0.81 | −0.29 | −0.32 | 0.32 | 0.41 | 0.37 | −0.35 | 0.68 | −0.43 | −0.43 | 0.41 | 0.53 | 0.48 | −0.53 | |||||||
15. Anxiety–Contentment—Feb | 2.98 | 0.83 | 0.89 | 0.54 | 0.49 | −0.29 | −0.28 | −0.24 | 0.25 | −0.29 | 0.65 | 0.56 | −0.24 | −0.35 | −0.18 | 0.22 | −0.31 | ||||||
16. Depression–Enthusiasm—Feb | 3.43 | 0.81 | 0.88 | 0.46 | 0.60 | −0.25 | −0.30 | −0.24 | 0.15 | −0.18 | 0.56 | 0.69 | −0.25 | −0.37 | −0.23 | 0.18 | −0.31 | 0.72 | |||||
17. Virus Uncertainty—Feb | 5.66 | 1.47 | 0.71 | −0.33 | −0.27 | 0.60 | 0.30 | 0.28 | −0.25 | 0.29 | −0.36 | −0.32 | 0.61 | 0.36 | 0.28 | −0.32 | 0.32 | −0.37 | −0.35 | ||||
18. Job Uncertainty—Feb | 4.28 | 1.87 | 0.85 | −0.25 | −0.23 | 0.25 | 0.51 | 0.32 | −0.20 | 0.21 | −0.30 | −0.21 | 0.22 | 0.58 | 0.37 | −0.28 | 0.30 | −0.38 | −0.34 | 0.38 | |||
19. Workload Uncertainty—Feb | 3.37 | 1.78 | 0.88 | −0.14 | −0.14 | 0.21 | 0.41 | 0.42 | −0.30 | 0.23 | −0.18 | −0.18 | 0.29 | 0.50 | 0.50 | −0.36 | 0.35 | −0.27 | −0.30 | 0.34 | 0.71 | ||
20. Logistics Uncertainty—Feb | 4.74 | 1.86 | 0.73 | 0.06 | 0.11 | −0.31 | −0.34 | −0.27 | 0.52 | −0.29 | 0.18 | 0.19 | −0.30 | −0.30 | −0.22 | 0.50 | −0.29 | 0.22 | 0.20 | −0.39 | −0.37 | −0.44 | |
21. Support Uncertainty—Feb | 3.48 | 1.55 | 0.75 | −0.25 | −0.27 | 0.33 | 0.36 | 0.26 | −0.31 | 0.55 | −0.36 | −0.34 | 0.32 | 0.40 | 0.27 | −0.39 | 0.67 | −0.35 | −0.31 | 0.42 | 0.50 | 0.46 | −0.50 |
July 2020 | October 2020 | February 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | ||||
Anxiety–contentment | |||||||||
Age | 0.02 | ** | 0.01 | 0.02 | *** | 0.00 | 0.01 | * | 0.00 |
Southern (0)/Midland university (1) | −0.06 | 0.12 | −0.03 | 0.11 | −0.06 | 0.11 | |||
Academic (0)/Nonacademic (1) | −0.03 | 0.12 | −0.04 | 0.12 | −0.07 | 0.12 | |||
Virus Uncertainty | −0.18 | ** | 0.06 | −0.05 | 0.06 | −0.21 | ** | 0.06 | |
Job Uncertainty | −0.24 | ** | 0.09 | −0.32 | *** | 0.08 | −0.23 | ** | 0.08 |
Workload Uncertainty | 0.03 | 0.09 | 0.10 | 0.08 | 0.04 | 0.08 | |||
Logistics Uncertainty | −0.03 | 0.07 | −0.02 | 0.07 | −0.02 | 0.07 | |||
Support Uncertainty | −0.15 | * | 0.07 | −0.31 | *** | 0.08 | −0.18 | * | 0.08 |
Depression–Enthusiasm | |||||||||
Age | 0.01 | 0.00 | 0.01 | ** | 0.00 | 0.01 | * | 0.00 | |
Southern (0)/Midland university (1) | −0.27 | * | 0.11 | −0.10 | 0.11 | −0.08 | 0.11 | ||
Academic (0)/Nonacademic (1) | −0.02 | 0.12 | −0.17 | 0.12 | −0.23 | 0.12 | |||
Virus Uncertainty | −0.07 | 0.06 | −0.03 | 0.06 | −0.19 | ** | 0.06 | ||
Job Uncertainty | −0.23 | ** | 0.08 | −0.19 | * | 0.08 | −0.14 | 0.08 | |
Workload Uncertainty | −0.05 | 0.08 | 0.01 | 0.08 | −0.07 | 0.08 | |||
Logistics Uncertainty | 0.04 | 0.07 | 0.03 | 0.07 | −0.03 | 0.07 | |||
Support Uncertainty | −0.13 | 0.07 | −0.32 | *** | 0.08 | −0.18 | * | 0.08 |
July | October | February | |||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | ||||
Anxiety–contentment | |||||||||
Age | 0.02 | ** | 0.01 | 0.01 | * | 0.00 | 0.00 | 0.00 | |
Southern (0)/Midlands university (1) | −0.06 | 0.12 | −0.02 | 0.09 | −0.04 | 0.09 | |||
Academic (0)/Nonacademic (1) | −0.03 | 0.12 | −0.02 | 0.10 | −0.08 | 0.10 | |||
Virus Uncertainty | −0.18 | ** | 0.06 | −0.02 | 0.05 | −0.09 | 0.05 | ||
Job Content Uncertainty | −0.24 | ** | 0.09 | −0.18 | ** | 0.07 | −0.13 | * | 0.07 |
Job Demands Uncertainty | 0.03 | 0.09 | 0.05 | 0.06 | −0.02 | 0.07 | |||
Logistics Uncertainty | −0.03 | 0.07 | 0.01 | 0.05 | 0.01 | 0.05 | |||
Support Uncertainty | −0.15 | * | 0.07 | −0.20 | ** | 0.06 | −0.04 | 0.07 | |
Past Anxiety–Contentment | 0.51 | *** | 0.04 | 0.51 | *** | 0.05 | |||
Depression–Enthusiasm | |||||||||
Age | 0.01 | 0.00 | 0.01 | * | 0.00 | 0.01 | 0.00 | ||
Southern (0)/Midlands university (1) | −0.27 | * | 0.11 | −0.02 | 0.09 | −0.01 | 0.08 | ||
Academic (0)/Nonacademic (1) | −0.02 | 0.12 | −0.16 | 0.10 | −0.16 | 0.09 | |||
Virus Uncertainty | −0.07 | 0.06 | −0.04 | 0.05 | −0.08 | 0.05 | |||
Job Content Uncertainty | −0.23 | ** | 0.08 | −0.09 | 0.07 | −0.13 | * | 0.06 | |
Job Demands Uncertainty | −0.05 | 0.08 | 0.05 | 0.06 | −0.08 | 0.06 | |||
Logistics Uncertainty | 0.04 | 0.07 | 0.06 | 0.05 | −0.03 | 0.05 | |||
Support Uncertainty | −0.13 | 0.07 | −0.21 | *** | 0.06 | −0.02 | 0.06 | ||
Past Depression–Enthusiasm | 0.53 | *** | 0.04 | 0.56 | *** | 0.04 |
July | October | February | |||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | ||||
Anxiety–contentment | |||||||||
Age | 0.02 | ** | 0.01 | 0.01 | * | 0.00 | 0.00 | 0.00 | |
Southern (0)/Midlands university (1) | −0.07 | 0.12 | −0.03 | 0.09 | −0.06 | 0.09 | |||
Academic (0)/Nonacademic (1) | −0.05 | 0.12 | 0.00 | 0.10 | −0.06 | 0.10 | |||
Virus Uncertainty | −0.17 | ** | 0.06 | −0.02 | 0.05 | −0.12 | * | 0.05 | |
Job Uncertainty | −0.23 | ** | 0.09 | −0.16 | * | 0.07 | −0.11 | 0.07 | |
Workload Uncertainty | 0.02 | 0.09 | 0.02 | 0.07 | −0.07 | 0.07 | |||
Logistics Uncertainty | −0.04 | 0.07 | 0.03 | 0.05 | −0.01 | 0.06 | |||
Support Uncertainty | −0.15 | * | 0.07 | −0.19 | ** | 0.06 | −0.02 | 0.07 | |
Past Anxiety–Contentment | 0.50 | *** | 0.04 | 0.51 | *** | 0.04 | |||
Past Anxiety–Contentment × Virus Uncertainty | 0.03 | 0.04 | 0.05 | 0.05 | |||||
Past Anxiety–Contentment × Job Uncertainty | 0.01 | 0.06 | 0.08 | 0.06 | |||||
Past Anxiety–Contentment × Workload Uncertainty | −0.11 | * | 0.06 | −0.11 | 0.06 | ||||
Past Anxiety–Contentment × Logistics Uncertainty | −0.06 | 0.05 | −0.13 | * | 0.05 | ||||
Past Anxiety–Contentment × Support Uncertainty | 0.03 | 0.06 | −0.03 | 0.06 | |||||
Depression–Enthusiasm | |||||||||
Age | 0.01 | 0.00 | 0.01 | * | 0.00 | 0.01 | 0.00 | ||
Southern (0)/Midlands university (1) | −0.28 | * | 0.11 | −0.04 | 0.09 | −0.02 | 0.08 | ||
Academic (0)/Nonacademic (1) | −0.03 | 0.12 | −0.14 | 0.10 | −0.15 | 0.09 | |||
Virus Uncertainty | −0.07 | 0.06 | −0.04 | 0.05 | −0.09 | 0.05 | |||
Job Uncertainty | −0.22 | ** | 0.08 | −0.08 | 0.07 | −0.09 | 0.06 | ||
Workload Uncertainty | −0.06 | 0.08 | 0.01 | 0.06 | −0.13 | 0.07 | |||
Logistics Uncertainty | 0.03 | 0.07 | 0.08 | 0.05 | −0.05 | 0.05 | |||
Support Uncertainty | −0.12 | 0.07 | −0.17 | ** | 0.06 | 0.00 | 0.06 | ||
Past Depression–Enthusiasm | 0.50 | *** | 0.04 | 0.56 | *** | 0.04 | |||
Past Depression–Enthusiasm × Virus Uncertainty | −0.04 | 0.05 | 0.03 | 0.05 | |||||
Past Depression–Enthusiasm × Job Uncertainty | 0.08 | 0.06 | −0.02 | 0.06 | |||||
Past Depression–Enthusiasm × Workload Uncertainty | −0.15 | ** | 0.06 | −0.10 | 0.05 | ||||
Past Depression–Enthusiasm × Logistics Uncertainty | −0.08 | 0.05 | −0.12 | * | 0.05 | ||||
Past Depression–Enthusiasm × Support Uncertainty | 0.08 | 0.05 | 0.04 | 0.05 |
Anxiety July | Depression July | Anxiety October | Depression October | Anxiety February | Depression February | |
---|---|---|---|---|---|---|
Age | 4.73 | 2.08 | 1.12 | 1.49 | 3.99 | 2.57 |
Southern (0)/Midlands university (1) | 1.65 | 10.89 | 0.07 | 0.48 | 0.28 | 0.39 |
Academic (0)/Nonacademic (1) | 2.27 | 1.12 | 0.86 | 0.29 | 0.32 | 0.44 |
Virus Uncertainty | 13.57 | 7.68 | 5.58 | 2.63 | 3.47 | 2.39 |
Job Uncertainty | 22.79 | 21.54 | 14.50 | 8.39 | 8.43 | 6.63 |
Workload Uncertainty | 11.78 | 13.74 | 4.24 | 3.43 | 6.24 | 6.22 |
Logistics Uncertainty | 11.18 | 10.71 | 4.63 | 4.45 | 4.22 | 1.84 |
Support Uncertainty | 32.02 | 32.23 | 12.80 | 11.37 | 8.50 | 8.14 |
Past Well–Being | 55.19 | 64.42 | 62.56 | 69.95 | ||
Past Well–Being × Virus Uncertainty | 0.04 | 0.08 | 0.14 | 0.14 | ||
Past Well–Being × Job Uncertainty | 0.12 | 0.48 | 0.38 | 0.15 | ||
Past Well–Being × Workload Uncertainty | 0.47 | 0.70 | 0.54 | 0.20 | ||
Past Well–Being × Logistics Uncertainty | 0.11 | 0.22 | 0.72 | 0.56 | ||
Past Well–Being × Support Uncertainty | 0.26 | 1.59 | 0.21 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, S.; Michaelides, G.; Daniels, K.; Niven, K. Uncertainty and Well-Being amongst Homeworkers in the COVID-19 Pandemic: A Longitudinal Study of University Staff. Int. J. Environ. Res. Public Health 2022, 19, 10435. https://doi.org/10.3390/ijerph191610435
Wood S, Michaelides G, Daniels K, Niven K. Uncertainty and Well-Being amongst Homeworkers in the COVID-19 Pandemic: A Longitudinal Study of University Staff. International Journal of Environmental Research and Public Health. 2022; 19(16):10435. https://doi.org/10.3390/ijerph191610435
Chicago/Turabian StyleWood, Stephen, George Michaelides, Kevin Daniels, and Karen Niven. 2022. "Uncertainty and Well-Being amongst Homeworkers in the COVID-19 Pandemic: A Longitudinal Study of University Staff" International Journal of Environmental Research and Public Health 19, no. 16: 10435. https://doi.org/10.3390/ijerph191610435
APA StyleWood, S., Michaelides, G., Daniels, K., & Niven, K. (2022). Uncertainty and Well-Being amongst Homeworkers in the COVID-19 Pandemic: A Longitudinal Study of University Staff. International Journal of Environmental Research and Public Health, 19(16), 10435. https://doi.org/10.3390/ijerph191610435