Development of a Combined Exercise and Cognitive Stimulation Intervention for People with Mild Cognitive Impairment—Designing the MEMO_MOVE PROGRAM
Abstract
:1. Introduction
- -
- What kind of exercise intervention and cognitive stimulation seems to be more effective for dementia patients?
- -
- What is the FITT plan that best improves physical fitness (functional ability, fitness, walking, equilibrium, muscular strength) and cognitive outcomes (cognitive function and cognitive ability)?
- -
- Is there sufficient evidence to favor one or more types of exercise for dementia patients?
2. Materials and Methods
2.1. Intervention Design
2.2. Theorical Framework Development
3. Results
3.1. Why: Rationale, Theory, and Goal (Program Design)
- According to these authors, a second decision must be considered in our decision tree, i.e., sequential, dual task/multicomponent, or interactive intervention (Figure 2).
- Tait et al. (2017) concluded that there were inconsistent findings with regard to the cognitive benefits of sequential training as compared with cognitive or exercise training alone. In contrast, simultaneous (dual task) training interventions have significantly improved cognition in both healthy and older clinical populations.
3.2. A Third Decision Concerns the Type of Cognitive Stimulation
3.3. The Fourth Decision Addresses the Exercise Characterization (FITT)
3.4. What—Materials: Provider, Participant, and Equipment
3.5. What—Procedure: Provider Training, Assessment, and Intervention Session
3.6. Where Intervention Location
3.7. How: Method of Delivery
- -
- Communication strategies, for instance, taking the time to speak and hear the participant; using clear, simple language to explain the exercises; acknowledging the participant’s feelings and mood; using verbal and body language, using a friendly secure voice; promoting participant’s communication.
- -
- Motivational strategies, for example, recognizing progress and skills, providing positive feedback, adapting exercise complexity to participants’ skills, using colorful materials, using music and images related to the cultural/social backgrounds of participants, providing different exercises, stimulating socialization in small groups.
3.8. Tailoring the Intervention
- -
- The motivation of individuals with MCI to exercise and perform the cognitive tasks;
- -
- The resistance of family members to participation in the program;
- -
- Difficulty in the medical diagnosis of dementia;
- -
- Logistical difficulties in participating in the program (transport, timetables).
- -
- Promotion of a one-to-one trial session, where an affective/trusting bond and proximity with the individual was created. The interpersonal relationship has proven to be a fundamental factor for adherence and participation in the program. The exercises should have a playful character and fit in with the cultural and social experiences of each person.
- -
- Inviting families to participate in the sessions, explaining the advantages in terms of functional autonomy and brain stimulation.
- -
- Integration of a team of psychologists who help to improve the diagnosis of individual’s cognitive capacities, as well as help to adapt cognitive stimulation to each person.
- -
- Choosing a central and easily accessible location, with timetables that are compatible with the lifestyles of the participants.
4. Discussion
4.1. Summary of Findings
4.2. Strengths and Limitations
5. Conclusions
Implementation and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein Sideman, A.; Al-Rousan, T.; Tsoy, E.; Piña Escudero, S.D.; Pintado-Caipa, M.; Kanjanapong, S.; Mbakile-Mahlanza, L.; Okada de Oliveira, M.; de la Cruz-Puebla, M.; Zygouris, S.; et al. Facilitators and Barriers to Dementia Assessment and Diagnosis: Perspectives From Dementia Experts Within a Global Health Context. Front. Neurol. 2022, 13, 769360. [Google Scholar] [CrossRef] [PubMed]
- Nichols, E.; Vos, T. The estimation of the global prevalence of dementia from 1990–2019 and forecasted prevalence through 2050: An analysis for the Global Burden of Disease (GBD) study 2019. Alzheimers Dement. 2021, 17, e051496. [Google Scholar] [CrossRef]
- Cao, Q.; Tan, C.-C.; Xu, W.; Hu, H.; Cao, X.-P.; Dong, Q.; Tan, L.; Yu, J.-T. The Prevalence of Dementia: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2020, 73, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Stevens, J.C.; Ganguli, M.; Tangalos, E.G.; Cummings, J.L.; DeKosky, S.T. Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review) [RETIRED]: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001, 56, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Dening, K.H.; Lloyd-Williams, M. Minimising long-term effect of COVID-19 in dementia care. Lancet 2020, 396, 957–958. [Google Scholar] [CrossRef]
- World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines; World Health Organization: Geneva, Switzerland, 2019; ISBN 978-92-4-155054-3. [Google Scholar]
- Lewis, K.; Livsey, L.; Naughton, R.J.; Burton, K. Exercise and dementia: What should we be recommending? Qual. Ageing Older Adults 2020, 21, 109–127. [Google Scholar] [CrossRef]
- Feter, N.; Dumith, S.C.; Smith, E.C.; da Cunha, L.L.; Cassuriaga, J.; Leite, J.S.; Alt, R.; Coombes, J.S.; Rombaldi, A.J. Physical activity attenuates the risk for dementia associated with aging in older adults with mild cognitive impairment. Findings from a population-based cohort study. J. Psychiatr. Res. 2021, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Falck, R.S.; Davis, J.C.; Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2017, 51, 800–811. [Google Scholar] [CrossRef]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, X.; Li, B.; Cai, Y.; Zhang, S.; Wan, Q.; Yu, F. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. J. Sport Health Sci. 2022, 11, 212–223. [Google Scholar] [CrossRef]
- Grande, G.; Vanacore, N.; Maggiore, L.; Cucumo, V.; Ghiretti, R.; Galimberti, D.; Scarpini, E.; Mariani, C.; Clerici, F. Physical Activity Reduces the Risk of Dementia in Mild Cognitive Impairment Subjects: A Cohort Study. J. Alzheimer’s Dis. 2014, 39, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Beckett, M.K.; Martino, S.C.; Agniel, D.; Mathews, M.; Hudson Scholle, S.; James, C.; Wilson-Frederick, S.; Orr, N.; Darabidian, B.; Elliott, M.N. Distinguishing neighborhood and individual social risk factors in health care. Health Serv. Res. 2022, 57, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef] [PubMed]
- Guure, C.B.; Ibrahim, N.A.; Adam, M.B.; Said, S.M. Impact of Physical Activity on Cognitive Decline, Dementia, and Its Subtypes: Meta-Analysis of Prospective Studies. BioMed Res. Int. 2017, 2017, 9016924. [Google Scholar] [CrossRef]
- Nuzum, H.; Stickel, A.; Corona, M.; Zeller, M.; Melrose, R.J.; Wilkins, S.S. Potential benefits of physical activity in MCI and dementia. Behav. Neurol. 2020, 2020, 7807856. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Maliszewska-Cyna, E.; Lynch, M.; Jordan Oore, J.; Michael Nagy, P.; Aubert, I. The Benefits of Exercise and Metabolic Interventions for the Prevention and Early Treatment of Alzheimer’s Disease. Available online: https://www.ingentaconnect.com/content/ben/car/2017/00000014/00000001/art00007 (accessed on 26 April 2022).
- Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective Effects of Physical Exercise in Alzheimer’s Disease and Parkinson’s Disease: A Narrative Review. J. Clin. Neurol. 2015, 11, 212. [Google Scholar] [CrossRef]
- Brasure, M.; Desai, P.; Davila, H.; Nelson, V.A.; Calvert, C.; Jutkowitz, E.; Butler, M.; Fink, H.A.; Ratner, E.; Hemmy, L.S.; et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia: A Systematic Review. Ann. Intern. Med. 2018, 168, 30–38. [Google Scholar] [CrossRef]
- Fleiner, T.; Leucht, S.; Förstl, H.; Zijlstra, W.; Haussermann, P. Effects of Short-Term Exercise Interventions on Behavioral and Psychological Symptoms in Patients with Dementia: A Systematic Review. J. Alzheimer’s Dis. 2016, 55, 1583–1594. [Google Scholar] [CrossRef]
- Gallou-Guyot, M.; Mandigout, S.; Combourieu-Donnezan, L.; Bherer, L.; Perrochon, A. Cognitive and physical impact of cognitive-motor dual-task training in cognitively impaired older adults: An overview. Neurophysiol. Clin. 2020, 50, 441–453. [Google Scholar] [CrossRef]
- Law, L.L.F.; Barnett, F.; Yau, M.K.; Gray, M.A. Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: A systematic review. Ageing Res. Rev. 2014, 15, 61–75. [Google Scholar] [CrossRef] [PubMed]
- McSween, M.-P.; Coombes, J.S.; MacKay, C.P.; Rodriguez, A.D.; Erickson, K.I.; Copland, D.A.; McMahon, K.L. The Immediate Effects of Acute Aerobic Exercise on Cognition in Healthy Older Adults: A Systematic Review. Sports Med. 2019, 49, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Moore, A.; Mpofu, E.; Dorstyn, D.; Li, Q.; Yin, C. Effectiveness of Combined Cognitive and Physical Interventions to Enhance Functioning in Older Adults with Mild Cognitive Impairment: A Systematic Review of Randomized Controlled Trials. Gerontologist 2020, 60, e633–e642. [Google Scholar] [CrossRef] [PubMed]
- Woods, B.; Aguirre, E.; Spector, A.E.; Orrell, M. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst. Rev. 2012, 15, CD005562. [Google Scholar] [CrossRef]
- Gheysen, F.; Poppe, L.; DeSmet, A.; Swinnen, S.; Cardon, G.; de Bourdeaudhuij, I.; Chastin, S.; Fias, W. Physical activity to improve cognition in older adults: Can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 63. [Google Scholar] [CrossRef]
- Karssemeijer, E.G.A.; Aaronson, J.A.; Bossers, W.J.; Smits, T.; Olde Rikkert, M.G.M.; Kessels, R.P.C. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res. Rev. 2017, 40, 75–83. [Google Scholar] [CrossRef]
- Tait, J.L.; Duckham, R.L.; Milte, C.M.; Main, L.C.; Daly, R.M. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults. Front. Aging Neurosci. 2017, 9, 368. [Google Scholar] [CrossRef]
- Varela-Vásquez, L.A.; Minobes-Molina, E.; Jerez-Roig, J. Dual-task exercises in older adults: A structured review of current literature. J. Frailty Sarcopenia Falls 2020, 5, 31–37. [Google Scholar] [CrossRef]
- Zhang, W.; Low, L.-F.; Gwynn, J.D.; Clemson, L. Interventions to Improve Gait in Older Adults with Cognitive Impairment: A Systematic Review: Interventions to Improve Gait. J. Am. Geriatr. Soc. 2019, 67, 381–391. [Google Scholar] [CrossRef]
- Moore, C.; Holmes, S.D.; Bardach, S.; Caban-Holt, A.M.; Murphy, R.; Jicha, G.A. P2-367: Even Dementia May Have a ‘Silver-Lining’: Half of MCI and Early Dementia Patients Report Positive Life Experiences as a Result of their Diagnosis on the Silver Lining Questionnaire. Alzheimer’s Dement. 2016, 12, 785–786. [Google Scholar] [CrossRef]
- Herold, F.; Hamacher, D.; Schega, L.; Müller, N.G. Thinking While Moving or Moving While Thinking—Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement. Front. Aging Neurosci. 2018, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Craig, P.; Dieppe, P.; Macintyre, S.; Michie, S.; Nazareth, I.; Petticrew, M. Developing and evaluating complex interventions: The new Medical Research Council guidance. BMJ 2008, 337, a1655. [Google Scholar] [CrossRef] [PubMed]
- Skivington, K.; Matthews, L.; Simpson, S.A.; Craig, P.; Baird, J.; Blazeby, J.M.; Boyd, K.A.; Craig, N.; French, D.P.; McIntosh, E.; et al. A new framework for developing and evaluating complex interventions: Update of Medical Research Council guidance. BMJ 2021, 374, n2061. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef] [PubMed]
- Wight, D.; Wimbush, E.; Jepson, R.; Doi, L. Six steps in quality intervention development (6SQuID). J. Epidemiol. Community Health 2016, 70, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Booth, V.; Harwood, R.H.; Hood-Moore, V.; Bramley, T.; Hancox, J.E.; Robertson, K.; Hall, J.; van der Wardt, V.; Logan, P.A. Promoting activity, independence and stability in early dementia and mild cognitive impairment (PrAISED): Development of an intervention for people with mild cognitive impairment and dementia. Clin. Rehabil. 2018, 32, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Schulz, K.F.; Simera, I.; Altman, D.G. Guidance for Developers of Health Research Reporting Guidelines. PLoS Med. 2010, 7, e1000217. [Google Scholar] [CrossRef]
- Cammisuli; Innocenti, A.; Fusi, J. Aerobic exercise effects upon cognition in Alzheimer’s Disease: A systematic review of randomized controlled trials. Arch. Ital. Biol. 2018, 156, 54–63. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y.; Li, J.; Zhou, C.; Li, F.; Yang, X. Physical activity can improve cognition in patients with Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. Clin. Interv. Aging 2018, 13, 1593–1603. [Google Scholar] [CrossRef]
- Groot, C.; Hooghiemstra, A.M.; Raijmakers, P.G.H.M.; van Berckel, B.N.M.; Scheltens, P.; Scherder, E.J.A.; van der Flier, W.M.; Ossenkoppele, R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev. 2016, 25, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Mellow, M.L.; Goldsworthy, M.R.; Coussens, S.; Smith, A.E. Acute aerobic exercise and neuroplasticity of the motor cortex: A systematic review. J. Sci. Med. Sport 2020, 23, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, H.; Rezola-Pardo, C.; Kortajarena, M.; Hervás, G.; Gil, J.; Yanguas, J.J.; Iturburu, M.; Gil, S.M.; Irazusta, J.; Rodriguez-Larrad, A. The impact of physical exercise on cognitive and affective functions and serum levels of brain-derived neurotrophic factor in nursing home residents: A randomized controlled trial. Maturitas 2020, 131, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Shimada, H.; Doi, T.; Yoshida, D.; Ito, K.; Kato, T.; Shimokata, H.; Washimi, Y.; Endo, H.; Suzuki, T. The Association Between Decline in Physical Functioning and Atrophy of Medial Temporal Areas in Community-Dwelling Older Adults with Amnestic and Nonamnestic Mild Cognitive Impairment. Arch. Phys. Med. Rehabil. 2011, 92, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.M.; Huang, M.-Z.; Liao, L.-R.; Chung, R.C.; Kwok, T.C.; Pang, M.Y. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: A systematic review. J. Physiother. 2018, 64, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Pitkälä, K.; Savikko, N.; Poysti, M.; Strandberg, T.; Laakkonen, M.-L. Efficacy of physical exercise intervention on mobility and physical functioning in older people with dementia: A systematic review. Exp. Gerontol. 2013, 48, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Morita, E.; Yokoyama, H.; Imai, D.; Takeda, R.; Ota, A.; Kawai, E.; Suzuki, Y.; Okazaki, K. Effects of 2-Year Cognitive–Motor Dual-Task Training on Cognitive Function and Motor Ability in Healthy Elderly People: A Pilot Study. Brain Sci. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Bruderer-Hofstetter, M.; Rausch-Osthoff, A.-K.; Meichtry, A.; Münzer, T.; Niedermann, K. Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition—A systematic review and network meta-analysis. Ageing Res. Rev. 2018, 45, 1–14. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Jayakody, O.; Vaidya, A.; Srikanth, V.; Farrow, M.; Delbaere, K. A novel cognitive-motor exercise program delivered via a tablet to improve mobility in older people with cognitive impairment—StandingTall Cognition and Mobility. Exp. Gerontol. 2021, 152, 111434. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Dong, C.; Minkov, R.; Bahar-Fuchs, A.; Ellis, K.A.; Lautenschlager, N.T.; Mellow, M.L.; Wade, A.T.; Smith, A.E.; Finke, C.; et al. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021, 66, 101232. [Google Scholar] [CrossRef]
- Gill, D.P.; Gregory, M.A.; Zou, G.; Liu-Ambrose, T.; Shigematsu, R.; Hachinski, V.; Fitzgerald, C.; Petrella, R.J. The Healthy Mind, Healthy Mobility Trial: A Novel Exercise Program for Older Adults. Med. Sci. Sports Exerc. 2016, 48, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.A.; Gill, D.P.; Zou, G.; Liu-Ambrose, T.; Shigematsu, R.; Fitzgerald, C.; Hachinski, V.; Shoemaker, K.; Petrella, R.J. Group-based exercise combined with dual-task training improves gait but not vascular health in active older adults without dementia. Arch. Gerontol. Geriatr. 2016, 63, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, K.; Showa, S.; Hiraoka, A.; Fushiki, Y.; Sakauchi, H.; Mori, M. Effect of a Dual-Task Net-Step Exercise on Cognitive and Gait Function in Older Adults. J. Geriatr. Phys. Ther. 2015, 38, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, J.H.; Na, H.R.; Hiroyuki, S.; Kim, G.M.; Jung, M.K.; Kim, W.K.; Park, K.W. Combined Intervention of Physical Activity, Aerobic Exercise, and Cognitive Exercise Intervention to Prevent Cognitive Decline for Patients with Mild Cognitive Impairment: A Randomized Controlled Clinical Study. J. Clin. Med. 2019, 8, 940. [Google Scholar] [CrossRef]
- Parvin, E.; Mohammadian, F.; Amani-Shalamzari, S.; Bayati, M.; Tazesh, B. Dual-Task Training Affect Cognitive and Physical Performances and Brain Oscillation Ratio of Patients with Alzheimer’s Disease: A Randomized Controlled Trial. Front. Aging Neurosci. 2020, 12, 605317. [Google Scholar] [CrossRef]
- Silva, M.G.; Struber, L.; Brandão, J.G.T.; Daniel, O.; Nougier, V. Influence of dual-task constraints on the interaction between posture and movement during a lower limb pointing task. Exp. Brain Res. 2018, 236, 963–972. [Google Scholar] [CrossRef]
- Sok, S.; Shin, E.; Kim, S.; Kim, M. Effects of Cognitive/Exercise Dual-Task Program on the Cognitive Function, Health Status, Depression, and Life Satisfaction of the Elderly Living in the Community. Int. J. Environ. Res. Public Health 2021, 18, 7848. [Google Scholar] [CrossRef]
- Tay, L.; Lim, W.S.; Chan, M.; Ali, N.; Chong, M.S. A Combined Cognitive Stimulation and Physical Exercise Programme (MINDVital) in Early Dementia: Differential Effects on Single- and Dual-Task Gait Performance. Gerontology 2016, 62, 604–610. [Google Scholar] [CrossRef]
- Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Okuma, N.; Westen, S.C.; Merz, M.E.; Pence, B.D.; Woods, J.A.; Kramer, A.F.; et al. Exergaming and Older Adult Cognition. Am. J. Prev. Med. 2012, 42, 109–119. [Google Scholar] [CrossRef]
- Barnes, D.E.; Santos-Modesitt, W.; Poelke, G.; Kramer, A.F.; Castro, C.; Middleton, L.E.; Yaffe, K. The Mental Activity and eXercise (MAX) Trial: A Randomized Controlled Trial to Enhance Cognitive Function in Older Adults. JAMA Intern. Med. 2013, 173, 797. [Google Scholar] [CrossRef]
- Lipardo, D.S.; Aseron, A.M.C.; Kwan, M.M.; Tsang, W.W. Effect of Exercise and Cognitive Training on Falls and Fall-Related Factors in Older Adults with Mild Cognitive Impairment: A Systematic Review. Arch. Phys. Med. Rehabil. 2017, 98, 2079–2096. [Google Scholar] [CrossRef] [PubMed]
- Rahe, J.; Becker, J.; Fink, G.R.; Kessler, J.; Kukolja, J.; Rahn, A.; Rosen, J.B.; Szabados, F.; Wirth, B.; Kalbe, E. Cognitive training with and without additional physical activity in healthy older adults: Cognitive effects, neurobiological mechanisms, and prediction of training success. Front. Aging Neurosci. 2015, 7, 187. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, J.-T.; Wang, H.-F.; Tan, C.-C.; Meng, X.-F.; Tan, L. Non-Pharmacological Interventions for Patients with Mild Cognitive Impairment: A Meta-Analysis of Randomized Controlled Trials of Cognition-Based and Exercise Interventions. J. Alzheimer’s Dis. 2014, 42, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Bherer, L. Cognitive plasticity in older adults: Effects of cognitive training and physical exercise: Cognitive plasticity in older adults. Ann. N. Y. Acad. Sci. 2015, 1337, 1–6. [Google Scholar] [CrossRef]
- Coelho, F.G.D.M.; Andrade, L.P.; Pedroso, R.V.; Santos-Galduroz, R.F.; Gobbi, S.; Costa, J.L.R.; Gobbi, L.T.B. Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer’s disease: A controlled trial. Geriatr. Gerontol. Int. 2013, 13, 198–203. [Google Scholar] [CrossRef]
- Desjardins-Crepeau, L.; Berryman, N.; Fraser, S.; Vu, T.T.M.; Kergoat, M.-J.; Li, K.; Bosquet, L.; Bherer, L. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin. Interv. Aging 2016, 11, 1287–1299. [Google Scholar] [CrossRef]
- Eggenberger, P.; Theill, N.; Holenstein, S.; Schumacher, V.; de Bruin, E. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: A secondary analysis of a 6-month randomized controlled trial with 1-year follow-up. Clin. Interv. Aging 2015, 10, 1711. [Google Scholar] [CrossRef]
- Forte, R.; Boreham, C.A.G.; Leite, J.C.; de Vito, G.; Brennan, L.; Gibney, E.R.; Pesce, C. Enhancing cognitive functioning in the elderly: Multicomponent vs. resistance training. Clin. Interv. Aging 2013, 8, 19. [Google Scholar] [CrossRef]
- Schaefer, S.; Schumacher, V. The Interplay between Cognitive and Motor Functioning in Healthy Older Adults: Findings from Dual-Task Studies and Suggestions for Intervention. Gerontology 2011, 57, 239–246. [Google Scholar] [CrossRef]
- Theill, N.; Schumacher, V.; Adelsberger, R.; Martin, M.; Jäncke, L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013, 14, 103. [Google Scholar] [CrossRef]
- Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: A randomized controlled trial. BMC Geriatr. 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Bamidis, P.D.; Fissler, P.; Papageorgiou, S.G.; Zilidou, V.; Konstantinidis, E.I.; Billis, A.S.; Romanopoulou, E.; Karagianni, M.; Beratis, I.; Tsapanou, A.; et al. Gains in cognition through combined cognitive and physical training: The role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 2015, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- González-Palau, F.; Franco, M.; Bamidis, P.; Losada, R.; Parra, E.; Papageorgiou, S.G.; Vivas, A.B. The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample. Aging Ment. Health 2014, 18, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Maillot, P.; Perrot, A.; Hartley, A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Valenzuela, T.; Lord, S.R.; de Bruin, E.D. The effect of interactive cognitive-motor training in reducing fall risk in older people: A systematic review. BMC Geriatr. 2014, 14, 107. [Google Scholar] [CrossRef]
- Styliadis, C.; Kartsidis, P.; Paraskevopoulos, E.; Ioannides, A.A.; Bamidis, P.D. Neuroplastic Effects of Combined Computerized Physical and Cognitive Training in Elderly Individuals at Risk for Dementia: An eLORETA Controlled Study on Resting States. Neural Plast. 2015, 2015, 172192. [Google Scholar] [CrossRef]
- Lauenroth, A.; Ioannidis, A.E.; Teichmann, B. Influence of combined physical and cognitive training on cognition: A systematic review. BMC Geriatr. 2016, 16, 141. [Google Scholar] [CrossRef]
- Stanmore, E.; Stubbs, B.; Vancampfort, D.; de Bruin, E.D.; Firth, J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2017, 78, 34–43. [Google Scholar] [CrossRef]
- Wang, S.; Yang, H.; Zhang, J.; Zhang, B.; Liu, T.; Gan, L.; Zheng, J. Efficacy and safety assessment of acupuncture and nimodipine to treat mild cognitive impairment after cerebral infarction: A randomized controlled trial. BMC Complementary Altern. Med. 2016, 16, 361. [Google Scholar] [CrossRef]
- Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 2016, 23, 128–142. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Tsutsumimoto, K.; Anan, Y.; Uemura, K.; Lee, S.; Park, H. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: A randomized controlled trial. BMC Neurol. 2012, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Harada, K.; Lee, S.; Harada, K.; Makino, K.; Chiba, I.; Park, H.; Shimada, H. The Effect of a Multicomponent Dual-Task Exercise on Cortical Thickness in Older Adults with Cognitive Decline: A Randomized Controlled Trial. J. Clin. Med. 2020, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Öhman, H.; Savikko, N.; Strandberg, T.; Kautiainen, H.; Raivio, M.M.; Laakkonen, M.-L.; Tilvis, R.; Pitkälä, K.H. Effects of Exercise on Cognition: The Finnish Alzheimer Disease Exercise Trial: A Randomized, Controlled Trial. J. Am. Geriatr. Soc. 2016, 64, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chae, M.; Yang, H. Simultaneous cognitive-physical dual task training based on fairy tales in older adults with mild cognitive impairment: A pilot study. Geriatr. Nur. 2021, 42, 1156–1163. [Google Scholar] [CrossRef]
- Rezola-Pardo, C.; Arrieta, H.; Gil, S.M.; Zarrazquin, I.; Yanguas, J.J.; López, M.A.; Irazusta, J.; Rodriguez-Larrad, A. Comparison between multicomponent and simultaneous dual-task exercise interventions in long-term nursing home residents: The Ageing-ONDUAL-TASK randomized controlled study. Age Ageing 2019, 48, 817–823. [Google Scholar] [CrossRef]
- Lemke, N.C.; Werner, C.; Wiloth, S.; Oster, P.; Bauer, J.M.; Hauer, K. Transferability and Sustainability of Motor-Cognitive Dual-Task Training in Patients with Dementia: A Randomized Controlled Trial. Gerontology 2019, 65, 68–83. [Google Scholar] [CrossRef]
- Delbroek, T.; Vermeylen, W.; Spildooren, J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial. J. Phys. Ther. Sci. 2017, 29, 1137–1143. [Google Scholar] [CrossRef]
- Venturelli, M.; Sollima, A.; Cè, E.; Limonta, E.; Bisconti, A.V.; Brasioli, A.; Muti, E.; Esposito, F. Effectiveness of Exercise- and Cognitive-Based Treatments on Salivary Cortisol Levels and Sundowning Syndrome Symptoms in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 53, 1631–1640. [Google Scholar] [CrossRef]
- Combourieu Donnezan, L.; Perrot, A.; Belleville, S.; Bloch, F.; Kemoun, G. Effects of simultaneous aerobic and cognitive training on executive functions, cardiovascular fitness and functional abilities in older adults with mild cognitive impairment. Ment. Health Phys. Act. 2018, 15, 78–87. [Google Scholar] [CrossRef]
- Shimada, H.; Ishii, K.; Makizako, H.; Ishiwata, K.; Oda, K.; Suzukawa, M. Effects of exercise on brain activity during walking in older adults: A randomized controlled trial. J. Neuroeng. Rehabil. 2017, 14, 50. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Pei, Y.-C. Musical dual-task training in patients with mild-to-moderate dementia: A randomized controlled trial. Neuropsychiatr. Dis. Treat. 2018, 14, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Doi, T.; Shimada, H.; Yoshida, D.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial. Aging Clin. Exp. Res. 2012, 24, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T. A Randomized Controlled Trial of Multicomponent Exercise in Older Adults with Mild Cognitive Impairment. PLoS ONE 2013, 8, e61483. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.; Weiler, J.; Gregory, M.A.; Gill, D.P.; Petrella, R.J. A Six-Month Cognitive-Motor and Aerobic Exercise Program Improves Executive Function in Persons with an Objective Cognitive Impairment: A Pilot Investigation Using the Antisaccade Task. J. Alzheimer’s Dis. 2016, 54, 923–931. [Google Scholar] [CrossRef]
- Silva, N.C.B.S.; Gregory, M.A.; Gill, D.P.; Petrella, R.J. Multiple-modality exercise and mind-motor training to improve cardiovascular health and fitness in older adults at risk for cognitive impairment: A randomized controlled trial. Arch. Gerontol. Geriatr. 2017, 68, 149–160. [Google Scholar] [CrossRef]
- Gregory, M.A.; Boa Sorte Silva, N.C.; Gill, D.P.; McGowan, C.L.; Liu-Ambrose, T.; Shoemaker, J.K.; Hachinski, V.; Holmes, J.; Petrella, R.J. Combined Dual-Task Gait Training and Aerobic Exercise to Improve Cognition, Mobility, and Vascular Health in Community-Dwelling Older Adults at Risk for Future Cognitive Decline1. J. Alzheimer’s Dis. 2017, 57, 747–763. [Google Scholar] [CrossRef]
- Hagovská, M.; Dzvoník, O.; Olekszyová, Z. Comparison of two cognitive training programs with effects on functional activities and quality of life. Res. Gerontol. Nurs. 2017, 10, 172–180. [Google Scholar] [CrossRef]
- Maffei, L.; Picano, E.; Andreassi, M. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study. Sci. Rep. 2017, 7, 39471. [Google Scholar]
- Wiloth, S.; Werner, C.; Lemke, N.C.; Bauer, J.; Hauer, K. Motor-cognitive effects of a computerized game-based training method in people with dementia: a randomized controlled trial. Aging Ment. Health 2018, 22, 1130–1141. [Google Scholar] [CrossRef]
- De Oliveira Silva, F.; Ferreira, J.V.; Plácido, J.; Sant’Anna, P.; Araújo, J.; Marinho, V.; Laks, J.; Camaz Deslandes, A. Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with Alzheimer’s disease: A randomized controlled trial. Maturitas 2019, 126, 28–33. [Google Scholar] [CrossRef]
- Kim, H.K.; Mendonça, K.M.; Howson, P.A.; Brotchie, J.M.; Andreazza, A.C. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells—The potential of JNX1001 as a therapeutic agent. Eur. J. Pharmacol. 2015, 764, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. Development and Validation of a Functional Fitness Test for Community-Residing Older Adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Ronai, P.; Gallo, P.M. The Short Physical Performance Battery (ASSESSMENT). ACSMS Health Fit. J. 2019, 23, 52–56. [Google Scholar] [CrossRef]
- Hoddinott, P. A new era for intervention development studies. Pilot Feasibility Stud. 2015, 1, 36. [Google Scholar] [CrossRef]
No | Study ID | Sample Size | Diagnosis/Test | Duration (Weeks) | Frequency | Intensity | Exercise Component | Cognitive Component | Cognitive/Motor Outcome | Control Group |
---|---|---|---|---|---|---|---|---|---|---|
1 | Makizako et al., 2012 [94] | 50 | Dementia/MMSE | 24 | 90 min/2 days a week | Moderate | Aerobic exercises, strength training, balance retraining | Poem composition, stairs stepping while counting 3 backwards, waking on balance board while counting 3 backward | Gait functions | Standard care |
2 | Suzuki et al., 2012 [83] | 50 | MCI/MMSE | 52 | 90 min/3 days a week | Moderate | Aerobic exercises, strength training, balance retraining | Poem composition, special ladder training | Gait functions, memory, executive function | Health education |
3 | Coelho et al., 2013 [67] | 27 | Alzheimer/MMSE | 16 | 60 min/3 days a week | 65% to 75% HRmax moderate | Strength/resistance training, aerobic capacity, flexibility, balance, agility | Cognitive activities focused attention, planned organization, abstraction, motor sequencing, and mental flexibility | Frontal cognitive function | Standard care |
4 | Suzuki et al., 2013 [95] | 100 | MCI//MMSE | 24 | 90 min/2 days a week | Not clear | Aerobic exercises, balance retraining, dual task training | Poem creation, special ladder training | Gait functions, memory | Health education |
5 | Gill et al., 2016 [53] | 44 | MCI/MoCA | 26 plus/26 follow up | 50 + 45 min/2 or 3 days a week | Not clear | Aerobic exercises, lower extremity strength training | Semantic/phonemic verbal fluency tasks, random athematic calculations | Gait functions, memory, executive function | Standard care |
6 | Heath et al., 2016 [96] | 63 | Dementia/MMSE | 24 | 60 min/3 days a week | Moderate to high intensity (65–85% HRmax) | Aerobic exercise, strength/balance training | Special square stepping exercise involving memory, executive functions, pattern recognition | Executive functions | Standard care |
7 | Öhman et al., 2016 [85] | 210 | AD/MMSE | 52 | 60 min/7 days a week | Not clear | Aerobic, strength, endurance, and balance training | Dual tasking with, ball games, dancing, calculation, and memory games | Gait functions, executive function, memory | Standard care |
8 | Venturelli et al., 2016 [90] | 80 | AD/MMSE | 12 | 60 min/5 days a week | Not clear | Brisk walking | Reality orientation method | Gait functions | Standard care |
9 | Silva et al., 2017 [97] | 127 | AD/MMSE | 24/28 follow up | 60 min/3 days a week | Moderate to high intensity (65–85% HRmax) | Aerobic exercises, resistance training, stretching | Mind motor training (special square stepping games) | Gait functions | Standard care |
10 | Delbroek et al., 2017 [89] | 20 | MCI/MoCA | 6 | 30 min/2 days a week | Not Clear | BioRescue training, aerobic exercises, balance retraining, weight bearing | Memory games, attention maze, dual task training | Gait functions, gait and balance | Standard care |
11 | Gregory et al., 2017 [98] | 56 | Dementia/MMSE | 26 | 40 min/3 days/week | Moderate to high intensity (65–85% HRmax) | Aerobic exercise | Executive function training: verbal fluency, memory, and arithmetic | Cognitive functions and gait | Standard care |
12 | Hagovská et al., 2017 [99] | 80 | MCI/ACE | 10 | 60 min/2 days a week | Not clear | Leg strengthening exercises, balance training | CogniPlus, memory, attention, executive function, visual motor training | Gait functions, memory, executive function, attention, balance | Health education |
13 | Karssemeijer et al., 2017 [28] | 742 | MCI/MMSE | 12 | 30–120 min/3 days a week | Not clear | Aerobic training a single | Computer-aided; cognitive (oral, memory, verbal fluency, spatial learning, attention, executive functions, orientation | Cognitive and motor functions | Standard care |
14 | Maffei et al., 2017 [100] | 113 | MCI/MMSE | 28 | 60 min/5 days a week | Not clear | Aerobic exercises, strength, control, and flexibility training | Attention, memory, learning, and meta cognitive training | Gait functions, executive function, attention | Non-musical cognitive task and walk |
15 | Shimada et al., 2017 [92] | 308 | MCI/RAVLT/MMSE | 40 plus/+ 12 follow up | 90 min/1 day a week | Not clear | Aerobic exercises, balance retraining, dual task training | Cognitive training (horticultural intervention) | Gait functions, memory, executive function | Standard care |
16 | Chen et al., 2018 [93] | 28 | Dementia/MMSE | 8 | 60 min/1 day week | Not clear | Functional activities, dual task walking | Walking while singing, playing instruments, cognitive load stepping | Executive function, balance, gait functions, | Standard care |
17 | Donnezan et al., 2018 [91] | 69 | MCI/MMSE | 12 | 60 min/2 days week | Moderate 60% HRmax | Aerobic training on bicycles, balance retraining. | Game software “HAPPYneuron” and Presco | Attention, executive functions, balance, gait functions | Standard care |
18 | Wiloth et al., 2018 [101] | 99 | Dementia/MMSE | 10 | 90 min/2 days week | Not clear | Dual task walking, sit to stand maneuver | Game based training (motor-cognitive exercises) | Executive functions | Standard care |
19 | Lemke et al., 2019 [88] | 105 | Dementia/MMSE | 10 plus/+12 follow up | 90 min/2 days week | Not clear | 10 m walk, dual tasking | DT Serial low/high demand calculation (2–3 forward and backward calculation) | Gait functions | Standard care |
20 | de Oliveira Silva at al., 2019 [102] | 52 | MCI/AD/CDR | 12 | 60 min/2 days week | 70–80% (VO2max) or 80% of HRmax | Balance, aerobic, and strength training and stretching | Executive functions, verbal training, selective attention | Mobility and executive function | Health education |
21 | Park et al., 2019 [56] | 49 | MCI/MMSE | 12 | 110 min/2 days week | Moderate | Aerobic exercises included stair stepping, resistance walking and stair climbing, and agility stair walking | Word games and numerical calculations | Cognitive function and physical function | Standard care |
22 | Rezola-Pardo et al., 2019 [87] | 85 | MCI/AD/MMSE | 12 | 60 min/2 days week | Moderate | Strength and balance exercises | Verbal training and arithmetic calculation | Physical performance and gait speed, cognitive functions | Standard care |
23 | Zhang et al., 2019 [31] | Not clear | MCI/ | Not clear | Not clear | Not clear | Strength and balance training | Attention and executive function | Cognitive and motor functions | Not clear |
24 | Bae et al., 2020 [84] | 280 | MCI/MMSE | 40 | 90 min/1 day week | Moderate | Aerobic exercises, balance strength training | Calculation, word games, poems citing, challenging cognitive tasks | Gait Functions, memory, executive function, motor functions | Standard care |
25 | Parvin et al., 2020 [57] | 32 | DA/MoCA | 12 | 40 to 60 min/2 days week | Moderate | Muscle endurance, balance, flexibility, and aerobic exercises | Short-term and working memory, attention and executive function | Cognitive and motor function | Standard care |
26 | Kim et al., 2021 [86] | 20 | MCI/MMSE | 12 | 60–90 min/1 day week | Moderate | Strength, rubber band | Remembered the names and main uses; counting numbers; planning and solving complex story problems | Balance and gait | Standard care |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondão, C.A.d.M.; Mota, M.P.G.; Esteves, D. Development of a Combined Exercise and Cognitive Stimulation Intervention for People with Mild Cognitive Impairment—Designing the MEMO_MOVE PROGRAM. Int. J. Environ. Res. Public Health 2022, 19, 10221. https://doi.org/10.3390/ijerph191610221
Rondão CAdM, Mota MPG, Esteves D. Development of a Combined Exercise and Cognitive Stimulation Intervention for People with Mild Cognitive Impairment—Designing the MEMO_MOVE PROGRAM. International Journal of Environmental Research and Public Health. 2022; 19(16):10221. https://doi.org/10.3390/ijerph191610221
Chicago/Turabian StyleRondão, Catarina Alexandra de Melo, Maria Paula Gonçalves Mota, and Dulce Esteves. 2022. "Development of a Combined Exercise and Cognitive Stimulation Intervention for People with Mild Cognitive Impairment—Designing the MEMO_MOVE PROGRAM" International Journal of Environmental Research and Public Health 19, no. 16: 10221. https://doi.org/10.3390/ijerph191610221
APA StyleRondão, C. A. d. M., Mota, M. P. G., & Esteves, D. (2022). Development of a Combined Exercise and Cognitive Stimulation Intervention for People with Mild Cognitive Impairment—Designing the MEMO_MOVE PROGRAM. International Journal of Environmental Research and Public Health, 19(16), 10221. https://doi.org/10.3390/ijerph191610221