High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Size
2.3. Experimental Design
2.3.1. Cardiopulmonary Exercise Test (CPET)
2.3.2. HIIT Testing Sessions
2.4. Outcome Measures
2.4.1. Physiological Responses
2.4.2. Internal Workload
2.4.3. Performance Parameters
2.5. Statistical Analysis
3. Results
3.1. Physiological Responses
3.2. Internal Workload
3.3. Performance Parameters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mäestu, J.; Jürimäe, J.; Jürimäe, T. Monitoring of Performance and Training in Rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Lanao, J.; Foster, C.; Seiler, S.; Lucia, A. Impact of training intensity distribution on performance in endurance athletes. J. Strength Cond. Res. 2007, 21, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Billat, L.V. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Zafeiridis, A.; Sarivasiliou, H.; Dipla, K.; Vrabas, I.S. The effects of heavy continuous versus long and short intermittent aerobic exercise protocols on oxygen consumption, heart rate, and lactate responses in adolescents. Eur. J. Appl. Physiol. 2010, 110, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Granata, C.; Jamnick, N.A.; Bishop, D.J. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018, 48, 1809–1828. [Google Scholar] [CrossRef]
- Faelli, E.; Ferrando, V.; Bisio, A.; Ferrando, M.; La Torre, A.; Panasci, M.; Ruggeri, P. Effects of Two High-intensity Interval Training Concepts in Recreational Runners. Int. J. Sports Med. 2019, 40, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Tschakert, G.; Hofmann, P. High-intensity intermittent exercise: Methodological and physiological aspects. Int. J. Sports Physiol. Perform. 2013, 8, 600–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef]
- Ní Chéilleachair, N.J.; Harrison, A.J.; Warrington, G.D. HIIT enhances endurance performance and aerobic characteristics more than high-volume training in trained rowers. J. Sports Sci. 2017, 35, 1052–1058. [Google Scholar] [CrossRef]
- Turner, K.J.; Pyne, D.B.; Périard, J.D.; Rice, A.J. High-Intensity Interval Training and Sprint-Interval Training in National-Level Rowers. Front. Physiol. 2021, 12, 803430. [Google Scholar] [CrossRef]
- Stevens, A.W.J.; Olver, T.T.; Lemon, P.W.R. Incorporating sprint training with endurance training improves anaerobic capacity and 2000-m erg performance in trained oarsmen. J. Strength Cond. Res. 2015, 20, 833–837. [Google Scholar]
- Laursen, P.; Buchheit, M. Science and Application of High-Intensity Interval Training: Solutions to the Programming Puzzle; 1°; Kinetics, H., Ed.; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Tonson, A.; Ratel, S.; Yann, L.F.; Vilmen, C.; Cozzone, P.J.; Bendahan, D. Muscle energetics changes throughout maturation: A quantitative 31P-MRS analysis. J. Appl. Physiol. 2010, 109, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejewski, H.; Rahmani, A.; Chorin, F.; Lardy, J.; Giroux, C.; Ratel, S. The 1500-m rowing performance is highly dependent on modified wingate anaerobic test performance in national-level adolescent rowers. Pediatr. Exerc. Sci. 2016, 28, 572–579. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Song, J.R.; Kim, Y.J.; Kim, S.J.; Park, H.; Kim, C.S.; Kwak, H.B.; Kang, J.H.; Park, D.H. New 20 m progressive shuttle test protocol and equation for predicting the maximal oxygen uptake of korean adolescents aged 13–18 years. Int. J. Environ. Res. Public Health 2019, 16, 2265. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cattaneo, F. Programma di Allenamento Stagione Agonistica 2020; Federazione Italiana Canottaggio: Rome, Italy, 2020; pp. 1–15. [Google Scholar]
- Mikulic, P. Anthropometric and metabolic determinants of 6000-m rowing ergometer performance in internationally competitive rowers. J. Strength Cond. Res. 2009, 23, 1851–1857. [Google Scholar] [CrossRef]
- Gosselin, L.E.; Kozlowski, K.F.; Devinney-Boymel, L.; Hambridge, C. Metabolic response ofdifferent highintensity aerobic interval exercise protocols. J. Strength Cond. Res. 2012, 26, 2866–2871. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Thevenet, D.; Tardieu, M.; Zouhal, H.; Jacob, C.; Abderrahman, B.A.; Prioux, J. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur. J. Appl. Physiol. 2007, 102, 19–26. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE 2014, 9, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Boland, M.; Crotty, N.M.; Mahony, N.; Donne, B.; Fleming, N. A Comparison of Physiological Response to Incremental Testing on Stationary and Dynamic Rowing Ergometers. Int. J. Sports Physiol. Perform. 2022, 4, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Thevenet, D.; Leclair, E.; Tardieu-Berger, M.; Berthoin, S.; Regueme, S.; Prioux, J. Influence of recovery intensity on time spent at maximal oxygen uptake during an intermittent session in young, endurance-trained athletes. J. Sports Sci. 2008, 26, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Slimani, M.; Davis, P.; Franchini, E.; Moalla, W. Rating of Perceived Exertion for Quantification of Training and Combat Loads During Combat Sport-Specific Activities: A Short Review. J. Strength Cond. Res. 2017, 31, 2889–2902. [Google Scholar] [CrossRef] [PubMed]
- Alsamir Tibana, R.; Manuel Frade de Sousa, N.; Prestes, J.; da Cunha Nascimento, D.; Ernesto, C.; Falk Neto, J.; Kennedy, M.; Azevedo Voltarelli, F. Is Perceived Exertion a Useful Indicator of the Metabolic and Cardiovascular Responses to a Metabolic Conditioning Session of Functional Fitness? Sports 2019, 7, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar] [CrossRef]
- Assadi, H.; Lepers, R. Comparison of the 45-second/15-second intermittent running field test and the continuous treadmill test. Int. J. Sports Physiol. Perform. 2012, 7, 277–284. [Google Scholar] [CrossRef]
- Nevill, A.M.; Allen, S.V.; Ingham, S.A. Modelling the determinants of 2000 m rowing ergometer performance: A proportional, curvilinear allometric approach. Scand. J. Med. Sci. Sports 2011, 21, 73–78. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum, L., Ed.; Routledge: New York, NY, USA, 1998. [Google Scholar]
- Armstrong, N.; Barker, A.R. Oxygen uptake kinetics in children and adolescents: A review. Pediatr. Exerc. Sci. 2009, 21, 130–147. [Google Scholar] [CrossRef]
- Billat, L.V. Interval Training for Performance: A Scientific and Empirical Practice Special Recommendations for Middle- and Long-Distance Running. Part II: Anaerobic Interval Training. Sports Med. 2001, 31, 75–90. [Google Scholar] [CrossRef]
- Dorado, C.; Sanchis-Moysi, J.; Calbet, J.A.L. Effects of recovery mode on performance, O2 uptake, and O2 deficit during high-intensity intermittent exercise. Can. J. Appl. Physiol. 2004, 29, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Quan, M.; Zhuang, J. Effect of high-intensity interval training versus moderate-intensity continuous training on cardiorespiratory fitness in children and adolescents: A Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rønnestad, B.R.; Hansen, J.; Nygaard, H.; Lundby, C. Superior performance improvements in elite cyclists following short-interval vs. effort-matched long-interval training. Scand. J. Med. Sci. Sports 2020, 30, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Helen, C.; Whyte, G.P.; Doust, J.H. Physiological and performance effects of low- versus mixed-intensity rowing training. Med. Sci. Sports Exerc. 2008, 40, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Gaesser, G.A. Response of ventilatory and lactate thresholds to continuous and interval training. J. Appl. Physiol. 1985, 58, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G. Intra- and extra-cellular lactate shuttles. Med. Sci. Sports Exerc. 2000, 32, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Tschakert, G.; Kroepfl, J.; Mueller, A.; Moser, O.; Groeschl, W.; Hofmann, P. How to regulate the acute physiological response to “aerobic” high-intensity interval exercise. J. Sports Sci. Med. 2014, 14, 29–36. [Google Scholar]
Age (Years) | Height (cm) | Weight (kg) | BMI (kg∙m−2) | Fat Mass (%) | Lean Mass (kg) | Weekly Training Volume (h∙wk−1) | Rowing Experience (Years) |
---|---|---|---|---|---|---|---|
15.67 ± 0.22 | 179.78 ± 1.67 | 68.79 ± 2.58 | 21.22 ± 0.51 | 4.81 ± 0.79 | 60.63 ± 2.45 | 11.22 ± 0.26 | 4.11 ± 0.42 |
VO2max (mL∙kg−1∙min−1) | Pmax (Watt) | [La]+ (mmol∙L−1) | RPE (AU) | HRmax (bpm) |
---|---|---|---|---|
60.11 ± 1.91 | 296.90 ± 12.45 | 18.44 ± 1.17 | 9.56 ± 0.23 | 198 ± 1.77 |
Variables | L-HIIT | S-HIIT | Statistical Analysis: L-HIIT vs. S-HIIT |
---|---|---|---|
Physiological Responses | |||
VO2 (mL∙kg−1∙min−1) | 58.57 * (2.87) CI [52.08, 65.06] | 52.50 (1.25) CI [49.84, 55.16] | t(9) = 2.35, p = 0.043, d = 0.74 |
VO2 (L∙min−1) | 4.00 * (0.12) CI [3.73, 4.27] | 3.62 (0.12) CI [3.35, 3.88] | t(9) = 2.52, p = 0.033, d = 0.80 |
TotVO2 (mL·kg−1) | 1306.29 ** (70.45) CI [1146.91, 1465.67] | 1131.65 (50.97) CI [1016.35, 1246.96] | t(9) = 4.47, p = 0.0016, d = 1.41 |
VCO2 (L∙min−1) | 4.05 * (0.18) CI [3.64, 4.46] | 3.47 (0.15) CI [13.15, 3.80] | t(9) = 2.68, p = 0.025, d = 0.85 |
RER | 1.01 (0.03) CI [0.96, 1.08] | 0.96 (0.02) CI [0.91, 1.00] | t(9) = 1.49, p = 0.17, d = 0.47 |
VE (L∙min−1) | 115.75 * [105.90, 126.15] CI [84.33, 135.60] | 109.95 [84.90, 116.40] CI [72.19, 119.92] | Z = −2.50, p = 0.013, d = 0.79 |
T@90% VO2max (s) | 790.17 ** [678.50, 918.00] CI [709.13, 883.53] | 493.22 [301.75, 738.50] CI [347.85, 643.03] | Z = −2.80, p = 0.005, d = 0.89 |
Performance Parameters | |||
TD (m) | 5470.30 *** (159.70) CI [5109.04, 5831.56] | 4863.60 (137.28) CI [4553.06, 5174.13] | t(9) = 6.50, p < 0.001, d = 2.06 |
PPO (W) | 267.24 *** (9.98) CI [244.65, 289.82] | 296.90 (11.03) CI [271.94, 321.85] | t(9) = 26.80, p < 0.0001, d = 9.11 |
Internal Workload | |||
RPE (A.U.) | 9.22 ** [8.75, 10.00] CI [8.68, 9.81] | 5.83 [5, 6] CI [5.19, 6.14] | Z = −2.82, p < 0.005, d = 0.89 |
HRmax (bpm) | 196.60 *** (2.25) CI [191.51, 201.69] | 188.80 (2.14) CI [183.96, 193.64] | t(9) = 8.17, p < 0.0001, d = 2.58 |
[La]+ (mmol∙L−1) | 16.48 *** (1.2) CI [13.75, 19.21] | 8.46 (1.05) CI [6.09, 10.82] | t(9) = 8.17, p < 0.0001, d = 2.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faelli, E.; Panascì, M.; Ferrando, V.; Codella, R.; Bisio, A.; Ruggeri, P. High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males. Int. J. Environ. Res. Public Health 2022, 19, 8132. https://doi.org/10.3390/ijerph19138132
Faelli E, Panascì M, Ferrando V, Codella R, Bisio A, Ruggeri P. High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males. International Journal of Environmental Research and Public Health. 2022; 19(13):8132. https://doi.org/10.3390/ijerph19138132
Chicago/Turabian StyleFaelli, Emanuela, Marco Panascì, Vittoria Ferrando, Roberto Codella, Ambra Bisio, and Piero Ruggeri. 2022. "High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males" International Journal of Environmental Research and Public Health 19, no. 13: 8132. https://doi.org/10.3390/ijerph19138132
APA StyleFaelli, E., Panascì, M., Ferrando, V., Codella, R., Bisio, A., & Ruggeri, P. (2022). High-Intensity Interval Training for Rowing: Acute Responses in National-Level Adolescent Males. International Journal of Environmental Research and Public Health, 19(13), 8132. https://doi.org/10.3390/ijerph19138132