Quantitative Response of Gray-Level Co-Occurrence Matrix Texture Features to the Salinity of Cracked Soda Saline–Alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Preprocessing of Crack Images
2.3. Soil Property Measurements
2.4. Gray Level Co-Occurrence Matrix Texture Features
3. Results
3.1. Chemical and Physical Properties
3.2. Optimal Texture Features
3.3. Analysis of GLCM Parameters
3.3.1. Effects of Directions
3.3.2. Effects of Gray Levels and Step Sizes
3.4. Cross-Correlation Analysis between Different Texture Features
3.5. Logarithmic Regression Models between EC and Texture Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Feng, Y. Physico-chemical properties and ecological recovery of saline-alkali soil in Songnen Plain. Acta Pedol. Sin. 2009, 46, 169–172, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Zhao, K. Quantitative analysis of relationships between crack characteristics and properties of soda-saline in Songnen Plain, China. Chin. Geogr. Sci. 2015, 25, 591–601. [Google Scholar] [CrossRef]
- Amaya, T.; Nagahori, K.; Takahashi, T. Lysimeter experiment on the progressive process of salt exclusion-Positive studies on the salt behavior and salt exclusion in Kasaoka Bay polder. Trans. JPSIDER 1983, 104, 1–8. (In Japanese) [Google Scholar] [CrossRef]
- Lima, L.A.; Grismer, M.E. Soil crack morphology and soil-salinity. Soil Sci. 1992, 153, 149–153. [Google Scholar] [CrossRef]
- Fujimaki, H.; Baki, H.M.F.A.E. Effect of bypass-flow on leaching of salts in a cracking soil in the Nile Delta. Water 2021, 13, 993. [Google Scholar] [CrossRef]
- Van der Tak, L.D.; Grismer, M.E. Irrigation, drainage and soil salinity in cracking soils. Transactions of the ASAE. Am. Soc. Agric. Eng. 1987, 30, 740–744. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Assouline, S. Tillage effects on water and salt distribution in a vertisol during effluent irrigation and rainfall. Agron. J. 2002, 94, 1295–1304. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, W.; Zhu, L.; Wang, C.; Sheng, L.; Chen, Y. Effects of roots and salinity on law of development for farmland soil desiccation crack. Trans. Chin. Soc. Agric. Eng. 2014, 30, 83–89, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Zhu, C.; Zhu, W.; Wu, C. Geometric characteristics of shrinkage crack network in soil. Earth Sci. 2014, 39, 1465–1472. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, W.M.; Chen, B.; Chen, Y.G.; Ye, B. Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, northwest China. Appl. Clay Sci. 2016, 124–125, 1–10. [Google Scholar] [CrossRef]
- Xing, X.; Kuan, D.; Ma, X. Differences in loam water retention and shrinkage behavior: Effects of various types and concentrations of salt ions. Soil Tillage Res. 2017, 167, 61–72. [Google Scholar] [CrossRef]
- Wang, C.; Feng, G.; Zhang, Z.; Huang, M.; Qi, W.; Ma, L. Geometrical and statistical analysis of dynamic crack morphology in shrink-swell soils with addition of maize roots or salinity (NaCl). Soil Tillage Res. 2021, 212, 105057. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, C.; Cheng, Q.; Zeng, H.; Xu, J.; Tian, B. Desiccation cracking of soils: A review of investigation approaches underlying mechanisms, and influencing factors. Earth Sci. Rev. 2021, 216, 103586. [Google Scholar] [CrossRef]
- Flowers, M.; Lal, R. Axle load and tillage effects on the shrinkage characteristics of a Mollic Ochraqualf in northwest Ohio. Soil Tillage Res. 1990, 50, 251–258. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng. Geol. 2008, 101, 204–217. [Google Scholar] [CrossRef]
- Vogel, H.J.; Hoffmann, H.; Roth, K. Studies of crack dynamics in clay soil-I. Experimental methods, results, and morphological quantification. Geoderma 2005, 125, 203–211. [Google Scholar] [CrossRef]
- Yoshida, S.; Adachi, K. Effects of cropping and puddling practices on the cracking patterns in paddy fields. Soil Sci. Plant Nutr. 2001, 47, 519–532. [Google Scholar] [CrossRef]
- Castellano, G.; Bonilha, L.; Li, L.M.; Cendes, F. Texture analysis of medical images. Clin. Radiol. 2004, 59, 1061–1069. [Google Scholar] [CrossRef]
- Lan, R.; Zhong, S.; Liu, Z.; Shi, Z.; Luo, X. A simple texture feature for retrieval of medical images. Multimed. Tools Appl. 2018, 77, 10853–10866. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Z.; Li, J.; Deng, Y. Improving deep learning feature with facial texture feature for face recognition. Wirel. Pers. Commun. 2018, 103, 1195–1206. [Google Scholar] [CrossRef]
- Akbal, E. An automated environmental sound classification methods based on statistical and textural feature. Appl. Acoust. 2020, 167, 107413. [Google Scholar] [CrossRef]
- Yin, S.; Shao, Y.; Wu, A.; Wang, Y.; Gao, Z. Texture features analysis on micro-structure of paste backfill based on image analysis technology. J. Cent. South Univ. 2018, 25, 2360–2372. [Google Scholar] [CrossRef]
- Liu, L.; Kuang, G. Overview of image textural feature extraction methods. Int. J. Image Graph. 2009, 14, 622–635. [Google Scholar] [CrossRef]
- Aouat, S.; Ait-hammi, I.; Hamouchene, I. A new approach for texture segmentation based on the Gray Level Co-occurrence Matrix. Multimed. Tools Appl. 2021, 80, 24027–24052. [Google Scholar] [CrossRef]
- Bakheet, S.; Al-Hamadi, A. Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification. Comput. Biol. Med. 2021, 137, 104781. [Google Scholar] [CrossRef]
- Lian, M.; Huang, C. Texture feature extraction of gray-level co-occurrence matrix for metastatic cancer cells using scanned laser pico-projection images. Laser Med. Sci. 2019, 34, 1503–1508. [Google Scholar] [CrossRef]
- Rafi, M.; Mukhopadhyay, S. Texture description using multi-scale morphological GLCM. Multimed. Tools Appl. 2018, 77, 30505–30532. [Google Scholar] [CrossRef]
- Srivastava, D.; Rajitha, B.; Agarwal, S.; Singh, S. Pattern-based image retrieval using GLCM. Neural Comput. Appl. 2020, 32, 10819–10832. [Google Scholar] [CrossRef]
- Vimal, S.; Robinson, Y.H.; Kaliappan, M.; Vijayalakshmi, K.; Seo, S. A method of progression detection for glaucoma using K-means and the GLCM algorithm toward smart medical prediction. J. Supercomput. 2021, 77, 11894–11910. [Google Scholar] [CrossRef]
- Alvarado, F.A.P.; Hussein, M.A.; Becker, T.A. Vision System for Surface Homogeneity Analysis of Dough Based on the Grey Level Co-occurrence Matrix (GLCM) for Optimum Kneading Time Prediction. J. Food Process Eng. 2016, 39, 166–177. [Google Scholar] [CrossRef]
- Li, W.; Jiang, X.; Sun, W.; Wang, S.; Liu, C.; Zhang, X.; Zhang, Y.; Zhou, W.; Miao, L. Gingivitis identification via multichannel gray-level co-occurrence matrix and particle swarm optimization neural network. Int. J. Imaging Syst. Technol. 2019, 30, 401–411. [Google Scholar] [CrossRef]
- Lloyd, K.; Rosin, P.L.; Marshall, D.; Moore, S.C. Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach. Vision Appl. 2017, 28, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Oghaz, M.M.; Maarof, M.A.; Rohani, M.F.; Zainal, A.; Shaid, S.Z.M. An optimized skin texture model using gray-level co-occurrence matrix. Neural Comput. Appl. 2019, 31, 1835–1853. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Adekunle, A.A.; Odekuoye, T.; Khashman, A. Automatic system for grading banana using GLCM texture feature extraction and neural network arbitrations. J. Food Process Eng. 2017, 40, e12575. [Google Scholar] [CrossRef]
- Raju, P.; Rao, V.M.; Rao, B.P. Optimal GLCM combined FCM segmentation algorithm for detection of kidney cysts and tumor. Multimed. Tools Appl. 2019, 78, 18419–18441. [Google Scholar] [CrossRef]
- Singh, A.; Armstrong, R.T.; Regenauer-Lieb, K.; Mostaghimi, P. Rock Characterization Using Gray-Level Co-Occurrence Matrix: An Objective Perspective of Digital Rock Statistics. Water Resour. Res. 2018, 55, 1912–1927. [Google Scholar] [CrossRef]
- Tahir, M.A.; Bouridane, A.; Kurugollu, K. An FPGA Based Coprocessor for GLCM and Haralick Texture Features and their Application in Prostate Cancer Classification. Analog. Integr. Circuits Signal Process. 2005, 43, 205–215. [Google Scholar] [CrossRef]
- Varish, N.; Pal, A.K. A novel image retrieval scheme using gray level co-occurrence matrix descriptors of discrete cosine transform based residual image. Appl. Intell. 2018, 48, 2930–2953. [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Zhao, K.; Fu, B.; Jiang, T. Study of an on-line measurement method for the salt parameters of soda-saline soils based on the texture features of cracks. Geoderma 2016, 263, 60–69. [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Li, S.; Zhu, H.; Zhao, K. Quantitative analysis of spectral response to soda saline-alkali soil after cracking process: A laboratory procedure to improve soil property estimation. Remote Sens. 2019, 11, 1406. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Rahman, G.K.M.M.; Solaiman, A.R.M.; Alam, M.S.; Mia, M.A.B. Estimating electrical conductivity for soil salinity monitoring using various soil-water ratios depending on soil texture. Commun. Soil Sci. Plant Anal. 2020, 51, 635–644. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, B.; Liang, Z.; Zhao, Y.; Sun, W.; Hu, W. Study on salinization characteristics of surface soil in Western Songnen Plain. Soils. 2013, 45, 332–338, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ma, C. Quantitative retrieval of soil salt content in the Songnen Plain based on HJ1A-HIS images. Arid Zone Res. 2014, 31, 226–230, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Klaustermeier, A.; Tomlinson, H.; Daigh, A.L.M.; Limb, R.; DeSutter, T.; Sedivec, K. Comparison of soil-to-water suspension ratios for determining electrical conductivity of oil-production-water contaminated soils. Can. J. Soil Sci. 2016, 96, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wang, Z. The alkalization parameters and their influential factors of saline-sodic soil in the Songnen Plain. J. Arid Land Resour. Environ. 2006, 20, 183–191. [Google Scholar] [CrossRef]
- USSLS. Diagnoses and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954. [CrossRef]
- Zhang, G.; Yu, Q.; Wei, G.; Chen, B.; Yang, L.; Hu, C.; Li, J.; Chen, H. Study on the basic properties of the soda-saline soils in Songnen plain. Hydrogeol. Eng. Geol. 2007, 2, 37–40. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.; Zhang, J.; Chen, H. An experiment study of on the fundamental properties of the carbonate-saline soil in west of Jilin Province. J. Beijing Univ. Technol. 2011, 37, 217–224. [Google Scholar] [CrossRef]
- Yang, F.; An, F.; Wang, Z.; Yang, H.; Zhao, C. Spatial variation of apparent electrical conductivity of saline-sodic paddy soils in the Songnen Plain. Chin. J. Eco-Agric. 2015, 23, 614–619, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chi, C.; Wang, Z. Conversion relationship between the chemical parameters in saturated and in 1:5 soil water extracts of saline and alkali soils in Songnen Plain of Northeast China. Chin. J. Ecol. 2009, 28, 172–176, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Yu, Q.; Zhang, B.; Yang, R.; Chen, H. Influence of salt content on shearing strength of the carbonate saline soil in Songnen Plain. Chin. J. Geol. Hazard Control. 2008, 19, 128–131. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, W.; Chen, B.; Yang, L.; Zhang, G. Research on strength of Song-Nen Plain soda-saline soil. Rock Soil Mech. 2008, 29, 1793–1796. [Google Scholar] [CrossRef]
- Jeong, S.; Locat, J.; Leroueil, S. The effects of salinity and shear history on the rheological characteristics of illite-rich and Na-montmorillonite-rich clays. Clay. Clay Miner. 2012, 60, 108–120. [Google Scholar] [CrossRef]
- Aksenov, V.I.; Kal’Bergenov, R.G.; Leonov, A.R. Strength characteristics of frozen saline soils. Soil Mech. Found. Eng. 2003, 40, 55–59. [Google Scholar] [CrossRef]
- DeCarlo, K.F.; Shokri, N. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays. Water Resour. Res. 2014, 50, 3052–3072. [Google Scholar] [CrossRef]
- Shokri, N.; Zhou, P.; Keshmiri, A. Patterns of desiccation cracks in saline bentonite layers. Transport Porous Med. 2015, 110, 333–344. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, K.; Wu, X.; Zheng, X.; Li, X. Comparative analysis of the spectral response to soil salinity of saline-sodic soils under different surface conditions. Int. J. Environ. Res. Public Health 2018, 15, 2721. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Li, X.; Zhao, K.; Zheng, X.; Jiang, T. Quantitative research on the relationship between salinity and crack length of soda saline-alkali soil. Pol. J. Environ. Stud. 2019, 28, 823–832. [Google Scholar] [CrossRef]
- Lakshmikantha, M.R.; Prat, P.C.; Ledesma, A. Boundary Effects in the Desiccation of Soil Layers with Controlled Environmental Conditions. Geotech. Test. J. 2018, 41, 20170018. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Xie, R.; Zhu, H.; Zhao, Y.; Zhang, Z. Comparative study on the abilities of different crack parameters to estimate the salinity of soda saline-alkali soil in Songnen Plain, China. Catena 2022, 213, 106221. [Google Scholar] [CrossRef]
- Bordoloi, S.; Ni, J.; Ng, C.W.W. Soil desiccation cracking and its characterization in vegetated soil: A perspective review. Sci. Total Environ. 2020, 729, 138760. [Google Scholar] [CrossRef] [PubMed]
- Numbisi, F.N.; Coillie, F.M.B.V.; Wulf, R.D. Delineation of cocoa agroforests using multi-season sentinel-1 SAR images: Low grey level range reduces uncertainties in GLCM texture-based mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Eichkitz, C.G.; Amtmann, J. Impact of gray level transformation and chosen amplitude range on GLCM-based anisotropy estimation. First Break. 2019, 37, 67–74. [Google Scholar] [CrossRef]
- Chaahat, G.; Kumar, G.N.; Kumar, L.P. Gray level co-occurrence matrix (GLCM) parameters analysis for pyoderma image variants. J. Comput. Theor. Nanosci. 2020, 17, 353–358. [Google Scholar] [CrossRef]
Texture Features | Formulas |
---|---|
Contrast (CON) | |
Angular second moment (ASM) | |
Entropy (ENT) | |
Homogeneity (HOM) | |
Correlation (COR) | |
Cluster shade (CS) | |
Cluster prominence (CP) | |
Max probability (MP) | |
Sum average (SA) | |
Sum entropy (SE) | |
Sum variance (SV) | |
Information of correlation (IC1) | |
Information of correlation (IC2) |
Parameters | Min | Max | Mean | Standard | CV% | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
EC (ds/m) | 0.20 | 6.37 | 0.95 | 0.915 | 96.45 | 3.04 | 10.9 |
pH | 8.55 | 11.16 | 10.06 | 0.53 | 5.36 | 0.34 | −0.85 |
Moisture (%) | 2.01 | 4.47 | 2.95 | 0.58 | 19.32 | −1.14 | 0.06 |
Clay (%) | 25.01 | 30.99 | 27.88 | 1.61 | 5.74 | −1.01 | 0.06 |
Silt (%) | 30.06 | 41.95 | 35.98 | 3.51 | 9.77 | −1.30 | 0.02 |
Sand (%) | 28.19 | 39.38 | 33.86 | 3.39 | 10.01 | −1.13 | 0.13 |
Texture Features | 0° | 45° | 90° | 135° |
---|---|---|---|---|
CON | 0.82 | 0.78 | 0.76 | 0.78 |
ASM | −0.77 | −0.76 | −0.75 | −0.76 |
ENT | 0.74 | 0.73 | 0.72 | 0.73 |
HOM | −0.82 | −0.78 | −0.76 | −0.78 |
COR | −0.47 | −0.29 | −0.31 | −0.39 |
CS | −0.75 | −0.75 | −0.76 | −0.75 |
CP | 0.75 | 0.76 | 0.77 | 0.76 |
MP | −0.77 | −0.76 | −0.76 | −0.76 |
SA | 0.74 | 0.73 | 0.72 | 0.73 |
SE | −0.74 | −0.73 | −0.72 | −0.73 |
SV | 0.37 | 0.44 | 0.37 | 0.34 |
IC1 | 0.57 | 0.58 | 0.61 | 0.58 |
IC2 | −0.31 | −0.43 | −0.31 | −0.43 |
Parameters | Min | Max | Mean | Standard | CV% | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
CON | 4.82 × 10−6 | 6.2 × 10−3 | 2.6 × 10−3 | 1.5 × 10−3 | 58.25 | 0.06 | −0.61 |
ASM | 9.76 × 10−1 | 9.99 × 10−1 | 9.89 × 10−1 | 5.9 × 10−3 | 0.59 | 0.02 | −0.69 |
ENT | 1.92 × 10−4 | 1.13 × 10−1 | 5.29 × 10−2 | 2.79 × 10−2 | 52.71 | −0.22 | −0.70 |
HOM | 9.97 × 10−1 | 9.99 × 10−1 | 9.98 × 10−1 | 7.1 × 10−4 | 0.08 | −0.06 | −0.61 |
Texture Features | Logarithmic Regression Models | R2 | RMSE |
---|---|---|---|
CON | y = 0.0032 × lg(x) + 0.005 | 0.92 | 4.24 × 10−4 |
ASM | y = −0.0196 × lg(x) + 0.987 | 0.90 | 1.86 × 10−3 |
ENT | y = 0.091 × lg(x) + 0.065 | 0.88 | 9.68 × 10−3 |
HOM | y = −0.0024 × lg(x) + 0.998 | 0.92 | 2.12 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Z.; Zhu, H.; Ren, J. Quantitative Response of Gray-Level Co-Occurrence Matrix Texture Features to the Salinity of Cracked Soda Saline–Alkali Soil. Int. J. Environ. Res. Public Health 2022, 19, 6556. https://doi.org/10.3390/ijerph19116556
Zhao Y, Zhang Z, Zhu H, Ren J. Quantitative Response of Gray-Level Co-Occurrence Matrix Texture Features to the Salinity of Cracked Soda Saline–Alkali Soil. International Journal of Environmental Research and Public Health. 2022; 19(11):6556. https://doi.org/10.3390/ijerph19116556
Chicago/Turabian StyleZhao, Yue, Zhuopeng Zhang, Honglei Zhu, and Jianhua Ren. 2022. "Quantitative Response of Gray-Level Co-Occurrence Matrix Texture Features to the Salinity of Cracked Soda Saline–Alkali Soil" International Journal of Environmental Research and Public Health 19, no. 11: 6556. https://doi.org/10.3390/ijerph19116556
APA StyleZhao, Y., Zhang, Z., Zhu, H., & Ren, J. (2022). Quantitative Response of Gray-Level Co-Occurrence Matrix Texture Features to the Salinity of Cracked Soda Saline–Alkali Soil. International Journal of Environmental Research and Public Health, 19(11), 6556. https://doi.org/10.3390/ijerph19116556