How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukutome, A.; Watashi, K.; Kawakami, N.; Ishikawa, H. Mathematical modeling of severe acute respiratory syndrome nosocomial transmission in Japan: The dynamics of incident cases and prevalent cases. Microbiol. Immunol. 2007, 51, 823–832. [Google Scholar] [CrossRef][Green Version]
- Oraby, T.; Tyshenko, M.G.; Balkhy, H.H.; Tasnif, Y.; Quiroz-Gaspar, A.; Mohamed, Z.; Araya, A.; Elsaadany, S.; Al-Mazroa, E.; Alhelail, M.A.; et al. Analysis of the Healthcare MERS-CoV Outbreak in King Abdulaziz Medical Center, Riyadh, Saudi Arabia, June-August 2015 Using a SEIR Ward Transmission Model. Int. J. Environ. Res. Public Health 2020, 17, 2936. [Google Scholar] [CrossRef]
- Khedher, N.B.; Kolsi, L.; Alsaif, H. A multi-stage SEIR model to predict the potential of a new COVID-19 wave in KSA after lifting all travel restrictions. Alex. Eng. J. 2021, 60, 3965–3974. [Google Scholar] [CrossRef]
- COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus (accessed on 20 March 2022).
- Lopez, L.; Rodo, X. A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics. Results Phys. 2021, 21, 103746. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Li, C.; Zhao, Y.; Wang, D.; Huang, Z.; Yang, K. The role of seasonality in the spread of COVID-19 pandemic. Environ. Res. 2021, 195, 110874. [Google Scholar] [CrossRef]
- Wang, H.; Xu, K.; Li, Z.; Pang, K.; He, H. Improved Epidemic Dynamics Model and Its Prediction for COVID-19 in Italy. Appl. Sci. 2020, 10, 4930. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhang, A.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef]
- Ruan, L.; Wen, M.; Zeng, Q.; Chen, C.; Huang, S.; Yang, S.; Yang, J.; Wang, J.; Hu, Y.; Ding, S.; et al. New Measures for the Coronavirus Disease 2019 Response: A Lesson from the Wenzhou Experience. Clin. Infect. Dis. 2020, 71, 866–869. [Google Scholar] [CrossRef]
- Nistal, R.; de la Sen, M.; Gabirondo, J.; Alonso-Quesada, S.; Garrido, A.J.; Garrido, I. A Study on COVID-19 Incidence in Europe through Two SEIR Epidemic Models Which Consider Mixed Contagions from Asymptomatic and Symptomatic Individuals. Appl. Sci. 2021, 14, 6266. [Google Scholar] [CrossRef]
- Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N.I.; Jarvis, C.I.; Russell, T.W.; Munday, J.D.; Kucharski, A.J.; Edmunds, W.J.; Sun, F.; et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 2020, 8, e488–e496. [Google Scholar] [CrossRef]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Huang, J.; He, N.; Yu, H.; Lin, X.; et al. Association of Public Health Interventions with the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA 2020, 323, 1915–1923. [Google Scholar] [CrossRef]
- Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Flasche, S.; Clifford, S.; Pearson, C.A.; Munday, J.D.; et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270. [Google Scholar] [CrossRef]
- Batabyal, S. COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission. Chaos Solitons Fractals 2021, 145, 110772. [Google Scholar] [CrossRef]
- Neher, R.A.; Dyrdak, R.; Druelle, V.; Hodcroft, E.B.; Albert, J. Potential impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med. Wkly. 2020, 150, w20224. [Google Scholar] [CrossRef]
- Steel, J.; Palese, P.; Lowen, A.C. Transmission of a 2009 pandemic influenza virus shows a sensitivity to temperature and humidity similar to that of an H3N2 seasonal strain. J. Virol. 2011, 85, 1400–1402. [Google Scholar] [CrossRef]
- Eccles, R. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol. 2002, 122, 183–191. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Gu, Q.; Du, P.; Liang, H.; Dong, Q. Optimal temperature zone for the dispersal of COVID-19. Sci. Total Environ. 2020, 736, 139487. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, L.; Ma, J.; Zhou, L. On airborne transmission and control of SARS-Cov-2. Sci. Total Environ. 2020, 731, 139178. [Google Scholar] [CrossRef]
- Coskun, H.; Yildirim, N.; Gunduz, S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total Environ. 2021, 751, 141663. [Google Scholar] [CrossRef]
- Rendana, M. Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban Clim. 2020, 34, 100680. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef]
- Jüni, P.; Rothenbühler, M.; Bobos, P.; Thorpe, K.E.; Da Costa, B.R.; Fisman, D.N.; Slutsky, A.S.; Gesink, D. Impact of climate and public health interventions on the COVID-19 pandemic: A prospective cohort study. Can. Med. Assoc. J. 2020, 192, E566–E573. [Google Scholar] [CrossRef]
- Meyer, A.; Sadler, R.; Faverjon, C.; Cameron, A.R.; Bannister-Tyrrell, M. Evidence That Higher Temperatures Are Associated with a Marginally Lower Incidence of COVID-19 Cases. Front. Public Health 2020, 8, 367. [Google Scholar] [CrossRef]
- Lowen, A.C.; Steel, J.; Mubareka, S.; Palese, P. High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus. J. Virol. 2008, 82, 5650–5652. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef]
- Yarsky, P. Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states. Math. Comput. Simul. 2021, 185, 687–695. [Google Scholar] [CrossRef]
- Bashir, M.F.; Benghoul, M.; Numan, U.; Shakoor, A.; Komal, B.; Bashir, M.A.; Bashir, M.; Tan, D. Environmental pollution and COVID-19 outbreak: Insights from Germany. Air Qual. Atmos. Health 2020, 13, 1385–1394. [Google Scholar] [CrossRef]
- Coccia, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci. Total Environ. 2020, 729, 138474. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Huang, J.; Zhang, L.; Liu, C.; Liu, X.; Wang, L. Environmental Indicator for COVID-19 Non-Pharmaceutical Interventions. Geophys. Res. Lett. 2021, 149, 2020GL090344. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, J.; Zhou, J.; Zhang, L.; Wang, D.; Li, J.; Shi, C.; Fan, H. An evaluation of COVID-19 transmission control in Wenzhou using a modified SEIR model. Epidemiol. Infect. 2021, 149, e2. [Google Scholar] [CrossRef] [PubMed]
- Carcione, J.M.; Santos, J.E.; Bagaini, C.; Ba, J. A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model. Front. Public Health 2020, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- Chowell, G.; Hengartner, N.W.; Castillo-Chavez, C.; Fenimore, P.W.; Hyman, J.M. The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda. J. Theor. Biol. 2004, 229, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Long, X.; Liu, J. Modeling the COVID-19 Epidemic with Multi-Population and Control Strategies in the United States. Front. Public Health 2021, 9, 751940. [Google Scholar] [CrossRef]
- Liu, Z.; Magal, P.; Seydi, O.; Webb, G. Understanding Unreported Cases in the COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology 2020, 9, 50. [Google Scholar] [CrossRef]
- Yadav, P.D.; Sapkal, G.N.; Ella, R.; Sahay, R.R.; Nyayanit, D.A.; Patil, D.Y.; Deshpande, G.; Shete, A.M.; Gupta, N.; Mohan, V.K.; et al. Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J. Travel Med. 2021, 28, taab104. [Google Scholar] [CrossRef]
- Tareq, A.M.; Emran, T.B.; Dhama, K.; Dhawan, M.; Tallei, T.E. Impact of SARS-CoV-2 delta variant (B.1.617.2) in surging second wave of COVID-19 and efficacy of vaccines in tackling the ongoing pandemic. Hum. Vaccines Immunother. 2021, 17, 4126–4127. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, L.; Peng, Z.; Chen, L.L.; Meng, X.; Zhang, C.; Ip, J.D.; Chan, W.M.; Chu, A.W.; Chan, K.H.; et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg. Microbes Infect. 2022, 11, 277–283. [Google Scholar] [CrossRef]
Countries | Outbreak Period 1 | Containment Period 1 | Outbreak Period 2 | Containment Period 2 | Outbreak Period 3 | Containment Period 3 |
---|---|---|---|---|---|---|
United States | 21 March 2020 | 1 May 2020 | NA | NA | 7 February 2021 | NA |
France | 16 March 2020 | 11 May 2020 | 3 October 2020 | 11 November 2020 | 3 April 2020 | NA |
Brazil | 25 March 2020 | 1 June 2020 | 24 November 2020 | NA | NA | NA |
United Kingdom | 23 March 2020 | 11 May 2020 | 5 November 2020 | 2 December 2020 | 4 January 2021 | 17 May 2021 |
Italy | 9 March 2020 | 4 May 2020 | 25 October 2020 | 10 January 2021 | 3 April 2021 | 2 June 2021 |
Germany | 16 March 2020 | 20 April 2020 | 12 December 2020 | NA | NA | NA |
Turkey | 1 April 2020 | 12 May 2020 | 8 November 2020 | 25 January 2021 | 29 April 2021 | 17 May 2021 |
Australia | 2 March 2020 | 27 April 2020 | 2 August 2020 | 13 September 2020 | 1 January 2021 | 29 January 2021 |
Spain | 13 March 2020 | 13 April 2020 | 25 October 2020 | 23 November 2020 | 8 January 2021 | 9 May 2021 |
Argentina | 20 March 2020 | 16 May 2020 | 1 July 2020 | 18 July 2020 | 26 October 2020 | 1 December 2020 |
South-Africa | 26 March 2020 | 1 June 2020 | 12 July 2020 | 17 August 2020 | 29 December 2020 | NA |
Chile | 18 March 2020 | 7 August 2020 | 3 January 2021 | 23 March 2021 | NA | NA |
Parameters | Upper and Lower Bounds |
---|---|
(0, 0.5] | |
[0.1, 0.9] | |
[1, 365] | |
[0.1, 0.9] | |
[0.8, 2.0] | |
(0, 3] | |
(0, 3] |
Countries | A0 | A1 | Maximum Value (A1 + A0) | Minimum Value (A1 − A0) | |||||
---|---|---|---|---|---|---|---|---|---|
United States | 86 | 0.56 | 5.32 | 5.88 | 4.76 | 0.17 | 0.21 | 0.25 | 3.00 |
France | 121 | 1.07 | 3.58 | 4.65 | 2.51 | 0.13 | 0.47 | 0.05 | 0.02 |
Brazil | 14 | 0.84 | 2.69 | 3.53 | 1.85 | 0.32 | 0.50 | 0.07 | 0.70 |
United Kingdom | 98 | 0.50 | 4.14 | 4.64 | 3.64 | 0.17 | 0.31 | 1.02 | 3.00 |
Italy | 108 | 1.24 | 4.02 | 5.26 | 2.78 | 0.16 | 0.31 | 0.12 | 0.22 |
Germany | 110 | 1.25 | 5.17 | 6.42 | 3.92 | 0.16 | 0.23 | 0.48 | 0.96 |
Turkey | 71 | 1.82 | 2.85 | 4.67 | 1.02 | 0.14 | 0.79 | 0.08 | 0.02 |
Australia | 274 | 1.10 | 4.88 | 5.99 | 3.78 | 0.09 | 0.23 | 0.47 | 0.11 |
Spain | 66 | 0.63 | 3.27 | 3.90 | 2.64 | 0.23 | 0.40 | 0.54 | 0.05 |
Argentina | 339 | 0.74 | 4.60 | 5.34 | 3.86 | 0.23 | 0.27 | 0.23 | 3.00 |
South-Africa | 347 | 1.80 | 4.31 | 6.11 | 2.51 | 0.15 | 0.40 | 0.30 | 0.19 |
Chile | 339 | 1.27 | 2.60 | 3.87 | 1.33 | 0.31 | 0.69 | 0.09 | 3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wang, Y. How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications. Int. J. Environ. Res. Public Health 2022, 19, 6404. https://doi.org/10.3390/ijerph19116404
Zheng Y, Wang Y. How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications. International Journal of Environmental Research and Public Health. 2022; 19(11):6404. https://doi.org/10.3390/ijerph19116404
Chicago/Turabian StyleZheng, Yangcheng, and Yunpeng Wang. 2022. "How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications" International Journal of Environmental Research and Public Health 19, no. 11: 6404. https://doi.org/10.3390/ijerph19116404
APA StyleZheng, Y., & Wang, Y. (2022). How Seasonality and Control Measures Jointly Determine the Multistage Waves of the COVID-19 Epidemic: A Modelling Study and Implications. International Journal of Environmental Research and Public Health, 19(11), 6404. https://doi.org/10.3390/ijerph19116404