Effects of Sedentary Behavior Interventions on Mental Well-Being and Work Performance While Working from Home during the COVID-19 Pandemic: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedures
2.2. Intervention
2.3. Participants
2.4. Instruments
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Teychenne, M.; Costigan, S.A.; Parker, K. The association between sedentary behaviour and risk of anxiety: A systematic review. BMC Public Health 2015, 15, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, L.; Zhang, Y.; Zhang, D. Sedentary behaviour and the risk of depression: A meta-analysis. Br. J. Sports Med. 2015, 49, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.M.; Wilson, M.G.; Vandenberg, R.J.; DeJoy, D.M.; Orpinas, P. Association of comorbid mental health symptoms and physical health conditions with employee productivity. J. Occup. Environ. Med. 2009, 51, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Shibata, A.; Oka, K. Work Engagement, Productivity, and Self-Reported Work-Related Sedentary Behavior Among Japanese Adults: A Cross-Sectional Study. J. Occup. Environ. Med. 2018, 60, e173–e177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gremaud, A.L.; Carr, L.J.; Simmering, J.E.; Evans, N.J.; Cremer, J.F.; Segre, A.M.; Polgreen, L.A.; Polgreen, P.M. Gamifying Accelerometer Use Increases Physical Activity Levels of Sedentary Office Workers. J. Am. Heart Assoc. 2018, 7, e007735. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.S.; Mackintosh, K.A.; Dunstan, D.; Owen, N.; Dempsey, P.; Pennington, T.; McNarry, M.A. Rise and Recharge: Effects on Activity Outcomes of an e-Health Smartphone Intervention to Reduce Office Workers’ Sitting Time. Int. J. Environ. Res. Public Health 2020, 17, 9300. [Google Scholar] [CrossRef]
- Shrestha, N.; Kukkonen-Harjula, K.T.; Verbeek, J.H.; Ijaz, S.; Hermans, V.; Pedisic, Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. 2018, 12, Cd010912. [Google Scholar] [CrossRef] [Green Version]
- Mailey, E.L.; Rosenkranz, S.K.; Casey, K.; Swank, A. Comparing the effects of two different break strategies on occupational sedentary behavior in a real world setting: A randomized trial. Prev. Med. Rep. 2016, 4, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Brierley, M.L.; Chater, A.M.; Smith, L.R.; Bailey, D.P. The Effectiveness of Sedentary Behaviour Reduction Workplace Interventions on Cardiometabolic Risk Markers: A Systematic Review. Sports Med. 2019, 49, 1739–1767. [Google Scholar] [CrossRef] [PubMed]
- Mailey, E.L.; Rosenkranz, S.K.; Ablah, E.; Swank, A.; Casey, K. Effects of an Intervention to Reduce Sitting at Work on Arousal, Fatigue, and Mood Among Sedentary Female Employees: A Parallel-Group Randomized Trial. J. Occup. Environ. Med. 2017, 59, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, C.L.; Yates, T.; Biddle, S.J.H.; Davies, M.J.; Dunstan, D.W.; Esliger, D.W.; Gray, L.J.; Jackson, B.; O’Connell, S.E.; Waheed, G.; et al. Effectiveness of the Stand More AT (SMArT) Work intervention: Cluster randomised controlled trial. BMJ 2018, 363, k3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterman, J.E.; Healy, G.N.; Winkler, E.A.; Moodie, M.; Eakin, E.G.; Lawler, S.P.; Owen, N.; Dunstan, D.W.; LaMontagne, A.D. A cluster randomized controlled trial to reduce office workers’ sitting time: Effect on productivity outcomes. Scand. J. Work Environ. Health 2019, 45, 483–492. [Google Scholar] [CrossRef]
- McCoy, K.; Stinson, K.; Scott, K.; Tenney, L.; Newman, L.S. Health promotion in small business: A systematic review of factors influencing adoption and effectiveness of worksite wellness programs. J. Occup. Environ. Med. 2014, 56, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.; Ijaz, S.; Kukkonen-Harjula, K.T.; Kumar, S.; Nwankwo, C.P. Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. 2015, 1, Cd010912. [Google Scholar] [CrossRef]
- Dutta, N.; Koepp, G.A.; Stovitz, S.D.; Levine, J.A.; Pereira, M.A. Using sit-stand workstations to decrease sedentary time in office workers: A randomized crossover trial. Int. J. Environ. Res. Public Health 2014, 11, 6653–6665. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.A.; Kingwell, B.A.; Owen, N.; Dunstan, D.W. Breaking up workplace sitting time with intermittent standing bouts improves fatigue and musculoskeletal discomfort in overweight/obese office workers. Occup. Environ. Med. 2014, 71, 765–771. [Google Scholar] [CrossRef]
- Gibbs, B.B.; Kowalsky, R.J.; Perdomo, S.J.; Grier, M.; Jakicic, J.M. Energy expenditure of deskwork when sitting, standing or alternating positions. Occup. Med. 2017, 67, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Chau, J.Y.; Sukala, W.; Fedel, K.; Do, A.; Engelen, L.; Kingham, M.; Sainsbury, A.; Bauman, A.E. More standing and just as productive: Effects of a sit-stand desk intervention on call center workers’ sitting, standing, and productivity at work in the Opt to Stand pilot study. Prev. Med. Rep. 2016, 3, 68–74. [Google Scholar] [CrossRef] [Green Version]
- MacEwen, B.T.; MacDonald, D.J.; Burr, J.F. A systematic review of standing and treadmill desks in the workplace. Prev. Med. 2015, 70, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gutierrez, M.; Toledo, M.J.; Mullane, S.; Stella, A.P.; Diemar, R.; Buman, K.F.; Buman, M.P. Long-term effects of sit-stand workstations on workplace sitting: A natural experiment. J. Sci. Med. Sport 2018, 21, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, N.; Machida, M.; Kikuchi, H.; Amagasa, S.; Hayashi, T.; Odagiri, Y.; Takamiya, T.; Inoue, S. Associations of working from home with occupational physical activity and sedentary behavior under the COVID-19 pandemic. J. Occup. Health 2021, 63, e12212. [Google Scholar] [CrossRef]
- McDowell, C.P.; Herring, M.P.; Lansing, J.; Brower, C.; Meyer, J.D. Working from Home and Job Loss Due to the COVID-19 Pandemic Are Associated with Greater Time in Sedentary Behaviors. Front. Public Health 2020, 8, 597619. [Google Scholar] [CrossRef] [PubMed]
- Barone Gibbs, B.; Kline, C.E.; Huber, K.A.; Paley, J.L.; Perera, S. COVID-19 shelter-at-home and work, lifestyle and well-being in desk workers. Occup. Med. 2021, 71, 86–94. [Google Scholar] [CrossRef]
- Mailey, E.L.; Rosenkranz, R.; Rosenkranz, S.K.; Ablah, E.; Talley, M.; Biggins, A.; Towsley, A.; Honn, A. Reducing Occupational Sitting While Working from Home: Individual and Combined Effects of a Height-Adjustable Desk and an Online Behavioral Intervention. J. Occup. Environ. Med. 2021, 64, 91–98. [Google Scholar] [CrossRef]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Ann. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef]
- Bandura, A. Health promotion from the perspective of social cognitive theory. Psychol. Health 1996, 13, 623–649. [Google Scholar] [CrossRef]
- Chau, J.Y.; Van Der Ploeg, H.P.; Dunn, S.; Kurko, J.; Bauman, A.E. Validity of the occupational sitting and physical activity questionnaire. Med. Sci. Sports Exerc. 2012, 44, 118–125. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Carey, G. Positive and negative affectivity and their relation to anxiety and depressive disorders. J. Abnorm. Psychol. 1988, 97, 346–353. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Hann, D.M.; Jacobsen, P.B.; Azzarello, L.M.; Martin, S.C.; Curran, S.L.; Fields, K.K.; Greenberg, H.; Lyman, G. Measurement of fatigue in cancer patients: Development and validation of the Fatigue Symptom Inventory. Qual. Life Res. 1998, 7, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Shikiar, R.; Halpern, M.T.; Rentz, A.M.; Khan, Z.M. Development of the Health and Work Questionnaire (HWQ): An instrument for assessing workplace productivity in relation to worker health. Work 2004, 22, 219–229. [Google Scholar] [PubMed]
- Watson, D.; Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 1985, 98, 219–235. [Google Scholar] [CrossRef]
- Crawford, J.R.; Henry, J.D. The positive and negative affect schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 2004, 43, 245–265. [Google Scholar] [CrossRef]
- Lee, E.H. Review of the psychometric evidence of the perceived stress scale. Asian. Nurs. Res. (Korean Soc. Nurs. Sci.) 2012, 6, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.Y.; Lam, T.H.; Chan, S.S. Three versions of Perceived Stress Scale: Validation in a sample of Chinese cardiac patients who smoke. BMC Public Health 2010, 10, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero Juan, M.J. Short Web-based versions of the perceived stress (PSS) and Center for Epidemiological Studies-Depression (CESD) Scales: A comparison to pencil and paper resources among Internet users. Comput. Hum. Behav. 2006, 22, 830–846. [Google Scholar] [CrossRef]
- Hann, D.M.; Denniston, M.M.; Baker, F. Measurement of fatigue in cancer patients: Further validation of the Fatigue Symptom Inventory. Qual. Life Res. 2000, 9, 847–854. [Google Scholar] [CrossRef] [PubMed]
- von Thiele Schwarz, U.; Sjöberg, A.; Hasson, H.; Tafvelin, S. Measuring self-rated productivity: Factor structure and variance component analysis of the Health and Work Questionnaire. J. Occup. Environ. Med. 2014, 56, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Crain, A.L.; Solberg, L.I.; Unützer, J.; Glasgow, R.E.; Maciosek, M.V.; Whitebird, R. Severity of depression and magnitude of productivity loss. Ann. Fam. Med. 2011, 9, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, T.; Zackula, R.; Dugan, K.; Ablah, E. Workplace Stress and Productivity: A Cross-Sectional Study. Kans. J. Med. 2021, 14, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, S.K.; Mailey, E.L.; Umansky, E.; Rosenkranz, R.R.; Ablah, E. Workplace Sedentary Behavior and Productivity: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 6535. [Google Scholar] [CrossRef] [PubMed]
- Bentley, T.A.; Teo, S.T.; McLeod, L.; Tan, F.; Bosua, R.; Gloet, M. The role of organisational support in teleworker wellbeing: A socio-technical systems approach. Appl. Ergon. 2016, 52, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Galanti, T.; Guidetti, G.; Mazzei, E.; Zappalà, S.; Toscano, F. Work from Home during the COVID-19 Outbreak: The Impact on Employees’ Remote Work Productivity, Engagement, and Stress. J. Occup. Environ. Med. 2021, 63, e426–e432. [Google Scholar] [CrossRef]
- Pereira, M.A.; Mullane, S.L.; Toledo, M.J.L.; Larouche, M.L.; Rydell, S.A.; Vuong, B.; Feltes, L.H.; Mitchell, N.R.; de Brito, J.N.; Hasanaj, K.; et al. Efficacy of the ‘Stand and Move at Work’ multicomponent workplace intervention to reduce sedentary time and improve cardiometabolic risk: A group randomized clinical trial. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 133. [Google Scholar] [CrossRef]
- Wilke, J.; Mohr, L.; Tenforde, A.S.; Edouard, P.; Fossati, C.; González-Gross, M.; Sánchez Ramírez, C.; Laiño, F.; Tan, B.; Pillay, J.D.; et al. A Pandemic within the Pandemic? Physical Activity Levels Substantially Decreased in Countries Affected by COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 2235. [Google Scholar] [CrossRef]
- Chan, J.S.Y.; Liu, G.; Liang, D.; Deng, K.; Wu, J.; Yan, J.H. Special Issue—Therapeutic Benefits of Physical Activity for Mood: A Systematic Review on the Effects of Exercise Intensity, Duration, and Modality. J. Psychol. 2019, 153, 102–125. [Google Scholar] [CrossRef]
- Norris, R.; Carroll, D.; Cochrane, R. The effects of aerobic and anaerobic training on fitness, blood pressure, and psychological stress and well-being. J. Psychosom. Res. 1990, 34, 367–375. [Google Scholar] [CrossRef]
- Seva, R.R.; Tejero, L.M.S.; Fadrilan-Camacho, V.F.F. Barriers and facilitators of productivity while working from home during pandemic. J. Occup. Health 2021, 63, e12242. [Google Scholar] [CrossRef]
- Toscano, F.; Zappala, S. Social Isolation and Stress as Predictors of Productivity Perception and Remote Work Satisfaction during the COVID-19 Pandemic: The Role of Concern about the Virus in Moderated Double Mediation. Sustainability 2020, 12, 9804. [Google Scholar] [CrossRef]
- Harker, M.B.; MaCDonnell, R. Is telework effective for organizations? A meta-analysis of empirical research on perceptions of telework and organizational outcomes. Manag. Res. Rev. 2012, 35, 602–616. [Google Scholar] [CrossRef]
- Xiao, Y.; Becerik-Gerber, B.; Lucas, G.; Roll, S.C. Impacts of Working From Home During COVID-19 Pandemic on Physical and Mental Well-Being of Office Workstation Users. J. Occup. Environ. Med. 2021, 63, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Y.; Qian, J.; Parker, S.K. Achieving Effective Remote Working During the COVID-19 Pandemic: A Work Design Perspective. Appl. Psychol. 2020, 70, 16–59. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC Museum COVID-19 Timeline. 2022. Available online: https://www.cdc.gov/museum/timeline/covid19.html (accessed on 12 May 2022).
Variable | Desk Only (n = 24) | Program Only (n = 21) | Desk + Program (n = 21) | Control (n = 23) |
---|---|---|---|---|
Mean (SD) Age (years) | 46.5 (10.03) | 43.1 (12.32) | 42.0 (9.36) | 45.2 (10.79) |
Number (%) of Female Participants | 19 (79.2%) | 16 (76.2%) | 16 (76.2%) | 19 (82.6%) |
Number (%) of Participants of Normal BMI | 6 (25.0%) | 6 (28.6%) | 5 (23.8%) | 9 (39.1%) |
Number (%) of Participants of Overweight BMI | 10 (41.7%) | 5 (23.8%) | 8 (38.1%) | 4 (17.4%) |
Number (%) of Participants of Obese BMI | 8 (33.3%) | 10 (47.6%) | 8 (38.1%) | 10 (43.5%) |
Mean (SD) Participant BMI | 29.45 (4.83) | 29.81 (6.38) | 29.12 (5.57) | 29.34 (6.56) |
Mean (SD) Minutes Sitting per Workday | 412.3 (94.2) | 437.3 (81.3) | 444.1 (63.82) | 456.6 (55.8) |
- | Desk Only (n = 24) | Program Only (n =21) | Desk + Program (n = 21) | Control (n = 23) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Mean Change | Cohen’s d a | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Mean Change | Cohen’s d a | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Mean Change | Cohen’s d a | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Mean Change | |
Positive Affect | 31.9 (9.0) | 34.7 (9.7) | 2.74 | 0.135 | 32.0 (8.4) | 36.8 (7.1) | 4.95 | 0.566 | 27.7 (6.4) | 36.6 (7.0) | 9.35 | 1.106 | 33.6 (6.6) | 35.7 (8.1) | 1.91 |
Negative Affect | 17.3 (4.4) | 18.1 (6.2) | 0.74 | 0.434 | 20.6 (6.4) | 17.9 (5.5) | −2.38 | −0.124 | 19.3 (6.8) | 16.8 (5.1) | −3.30 | −0.266 | 19.2 (7.1) | 17.7 (5.4) | −1.74 |
Stress | 9.2 (2.7) | 8.8 (2.3) | −0.48 | 0.156 | 9.7 (2.5) | 8.4 (3.0) | −1.29 | −0.177 | 9.4 (2.9) | 8.3 (2.6) | −1.30 | −0.147 | 8.4 (2.7) | 7.6 (2.6) | −0.87 |
Fatigue Duration | 4.2 (1.6) | 4.0 (1.6) | −0.17 | 0.134 | 4.1 (1.8) | 4.0 (1.9) | −0.12 | 0.182 | 5.3 (1.7) | 4.0 (2.4) | −1.55 | −0.533 | 4.5 (2.0) | 4.0 (2.0) | −0.43 |
Fatigue Interference | 2.4 (1.7) | 2.0 (1.8) | −0.37 | −0.076 | 2.7 (2.0) | 1.7 (1.7) | −0.92 | −0.484 | 2.9 (2.3) | 1.9 (1.9) | −1.41 | −0.648 | 2.3 (1.8) | 2.1 (1.9) | −0.25 |
Fatigue Severity | 3.6 (2.0) | 3.5 (1.7) | −0.10 | 0.228 | 3.2 (1.6) | 3.5 (2.2) | 0.43 | 0.577 | 3.8 (1.7) | 2.9 (2.3) | −0.90 | −0.191 | 4.1 (2.0) | 3.5 (2.3) | −0.51 |
Irritability | 3.2 (1.8) | 2.8 (1.6) | −0.22 | −0.081 | 3.2 (1.9) | 2.7 (1.6) | −0.62 | −0.295 | 3.3 (1.9) | 3.2 (1.5) | −0.35 | −0.142 | 3.1 (1.1) | 3.0 (1.9) | −0.08 |
Focus | 6.9 (1.9) | 7.3 (1.9) | 0.15 | 0.069 | 7.0 (2.0) | 7.5 (1.8) | 0.40 | 0.201 | 6.5 (1.9) | 7.5 (1.6) | 1.26 | 0.702 | 7.1 (1.9) | 7.0 (2.1) | 0.02 |
Work Satisfaction | 6.8 (1.5) | 7.1 (1.5) | 0.28 | 0.187 | 7.0 (1.8) | 6.9 (1.7) | 0.07 | 0.058 | 6.3 (1.7) | 7.4 (1.5) | 1.24 | 0.751 | 7.3 (1.5) | 7.3 (1.6) | −0.02 |
Non-work Satisfaction | 8.4 (1.5) | 8.1 (1.6) | −0.26 | −0.340 | 7.2 (1.6) | 7.6 (1.7) | 0.40 | 0.085 | 6.9 (2.1) | 8.1 (1.8) | 1.25 | 0.603 | 7.9 (1.7) | 8.4 (1.3) | 0.28 |
Productivity | 7.2 (1.4) | 7.4 (1.1) | 0.15 | 0.090 | 7.2 (1.3) | 7.4 (1.0) | 0.36 | 0.257 | 7.0 (1.2) | 7.6 (1.4) | 0.70 | 0.572 | 7.4 (1.2) | 7.5 (1.4) | 0.05 |
Theme | % of Responses Including This Theme |
---|---|
Improved work performance (more focused, etc.) | 49% |
Improved energy | 39% |
Increased activity levels | 32% |
Less pain/stiffness/soreness | 32% |
Physiological health improvement | 22% |
Improved mental well-being (improved mood, etc.) | 17% |
Improvements in non-physical activity health behaviors (such as sleep) | 5% |
Theme | % of Responses Including This Theme |
---|---|
Increased physical activity during desk work | 45% |
Increased amount of exercise outside of work | 36% |
Increased awareness of healthy habits | 36% |
Taking more breaks | 24% |
Improved diet | 21% |
Increased work performance (focus, productivity, etc.) | 14% |
Physiological health benefits | 12% |
Spending more time outside | 12% |
No benefit | 2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falk, G.E.; Mailey, E.L.; Okut, H.; Rosenkranz, S.K.; Rosenkranz, R.R.; Montney, J.L.; Ablah, E. Effects of Sedentary Behavior Interventions on Mental Well-Being and Work Performance While Working from Home during the COVID-19 Pandemic: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 6401. https://doi.org/10.3390/ijerph19116401
Falk GE, Mailey EL, Okut H, Rosenkranz SK, Rosenkranz RR, Montney JL, Ablah E. Effects of Sedentary Behavior Interventions on Mental Well-Being and Work Performance While Working from Home during the COVID-19 Pandemic: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2022; 19(11):6401. https://doi.org/10.3390/ijerph19116401
Chicago/Turabian StyleFalk, Grace E., Emily L. Mailey, Hayrettin Okut, Sara K. Rosenkranz, Richard R. Rosenkranz, Justin L. Montney, and Elizabeth Ablah. 2022. "Effects of Sedentary Behavior Interventions on Mental Well-Being and Work Performance While Working from Home during the COVID-19 Pandemic: A Pilot Randomized Controlled Trial" International Journal of Environmental Research and Public Health 19, no. 11: 6401. https://doi.org/10.3390/ijerph19116401
APA StyleFalk, G. E., Mailey, E. L., Okut, H., Rosenkranz, S. K., Rosenkranz, R. R., Montney, J. L., & Ablah, E. (2022). Effects of Sedentary Behavior Interventions on Mental Well-Being and Work Performance While Working from Home during the COVID-19 Pandemic: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 19(11), 6401. https://doi.org/10.3390/ijerph19116401