Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries
Abstract
:1. Introduction
1.1. Mercury
1.2. Hg Use in ASGM Communities
1.3. Minamata Convention on Hg
1.4. Objective
2. Materials and Methods
2.1. Study Selection
2.2. Quality Assessment
3. Results
3.1. Hg Concentrations in Air
3.2. Hg Concentrations in Water Bodies
3.3. Hg Concentrations in Soil
3.4. Hg Concentrations in Plants
3.5. Hg Concentration in Fish
3.6. Hg Concentrations in Human Hair
3.7. Health Risk Assessment of ASGM Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNutt, M. Mercury and Health. Science 2013, 341, 14–30. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 30 March 2022). [CrossRef] [PubMed] [Green Version]
- Moreno-Brush, M.; McLagan, D.S.; Biester, H. Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls. A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 437–475. [Google Scholar] [CrossRef]
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Global Mercury Assessment 2018; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Hylander, L.D.; Meili, M. 500 Years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Total Environ. 2003, 304, 13–27. [Google Scholar] [CrossRef]
- UNEP. Reducing Mercury Use in Artisanal and Small-Scale; United Nations Environment Programme, United Nations: New York, NY, USA, 2012; p. 76. [Google Scholar]
- Hilson, G. Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas. Sci. Total Environ. 2006, 362, 1–14. [Google Scholar] [CrossRef]
- Clifford, M.J. Future strategies for tackling mercury pollution in the artisanal gold mining sector: Making the Minamata Convention work. Futures 2014, 62, 106–112. [Google Scholar] [CrossRef]
- Sousa, R.; Veiga, M.; van Zyl, D.; Telmer, K.; Spiegel, S.; Selder, J. Policies and regulations for Brazil’s artisanal gold mining sector: Analysis and recommendations. J. Clean. Prod. 2011, 19, 742–750. [Google Scholar] [CrossRef]
- Htun, K. Sustainable Mining in Myanmar. Appl. Environ. Res. 2014, 36, 25–35. [Google Scholar] [CrossRef]
- McFarlane, D.; Villalobos, R. The State of Artisanal Mining in Myanmar. 2019. Available online: https://delvedatabase.org/uploads/resources/The-State-of-Artisanal-Mining-in-Myanmar-Report.-PACT.-May28.2019.pdf (accessed on 4 November 2021).
- Environmental Conservation Department (ECD), Ministry of Natural Resources and Environmental Conservation—MONREC. Distribution of ASGM Activities in Myanmar; MONREC: Naypyidaw, Myanmar, 2018.
- United Nations Environnent Programme (UNEP). Minamata Convention on Mercury. Available online: www.unep.org; www.mercuryconvention.org (accessed on 1 September 2019).
- UNEP. Status of Signature, and Ratification, Acceptance, Approval or Accession in Minamata Convention. Available online: https://www.mercuryconvention.org/en/parties (accessed on 30 March 2022).
- Delve. A Global Platform for Artisanal and Small Scale Mining Data. 2020. Available online: https://stateofthesector.delvedatabase.org (accessed on 30 March 2022).
- Seccatore, J.; Veiga, M.; Origliasso, C.; Marin, T.; de Tomi, G. An estimation of the artisanal small-scale production of gold in the world. Sci. Total Environ. 2014, 496, 662–667. [Google Scholar] [CrossRef]
- Tun, A.Z.; Wongsasuluk, P.; Siriwong, W. Heavy Metals in the Soils of Placer Small-Scale Gold Mining Sites in Myanmar. Available online: https://meridian.allenpress.com/jhp/article-abstract/10/27/200911/445447 (accessed on 1 November 2021).
- Kuang, X.; Kyaw, W.T.; Soe, P.S.; Thandar, A.M.; Khin, H.E. A Preliminary Study on Mercury Contamination in Artisanal and Small-Scale Gold Mining Area in Mandalay Region, Myanmar by using Plant Samples. Pollution 2022, 8, 225–238. [Google Scholar] [CrossRef]
- Kyaw, W.T.; Kuang, X.; Sakakibara, M. Health impact assessment of artisanal and smallscale gold mining area in Myanmar, Mandalay Region: Preliminary research. Int. J. Environ. Res. Public Health 2020, 17, 6757. [Google Scholar] [CrossRef] [PubMed]
- Osawa, T.; Hatsukawa, Y. Artisanal and small-scale gold mining in Myanmar: Preliminary research for environmental mercury contamination. Int. J. Hum. Cult. Stud. 2015, 25, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, T.; Konishi, M.; Imai, Y.; Soe, P.S. Diffusion of mercury from artisanal small-scale gold mining (ASGM) sites in Myanmar. Int. J. GEOMATE 2019, 17, 228–235. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Tun, A.Z.; Chotpantarat, S.; Siriwong, W. Related health risk assessment of exposure to arsenic and some heavy metals in gold mines in Banmauk Township, Myanmar. Sci. Rep. 2021, 11, 22843. [Google Scholar] [CrossRef] [PubMed]
- Yepes-Nuñez, J.J.; Urrútia, G.; Romero-García, M.; Alonso-Fernández, S. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Munthe, J.; Wängberg, I.; Pirrone, N.; Iverfeldt, A.; Ferrera, R.; Ebinghaus, R.; Feng, X.; Gardfeldt, K.; Keeler, G.; Lanzillotta, E.; et al. Intercomparison of methods for sampling and analysis of atmospheric mercury species. Atmos. Environ. 2001, 35, 3007–3017. [Google Scholar] [CrossRef]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopez-Araujo, A.; Santos-Sacramento, L.; Takeda, P.Y.; Macchi, B.d.M.; Martins do Nascimento, J.L.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P. Mercury: What can we learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef]
- Nakazawa, K.; Nagafuchi, O.; Kawakami, T.; Inoue, T.; Yokota, K.; Serikawa, Y.; Cyio, B.; Elvince, R. Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicol. Environ. Saf. 2016, 124, 155–162. [Google Scholar] [CrossRef]
- Murao, S.; Tomiyasu, T.; Ono, K.; Shibata, H.; Narisawa, N.; Takenaka, C. Mercury Distribution in Artisanal and Small-Scale Gold Mining Area: A Case Study of Hot Spots in Camarines Norte, Philippines. Available online: http://www.ijesd.org/vol10/1160-L0008.pdf (accessed on 2 November 2021).
- WHO/Europe, Chapter 6.9 Mercury, 2000. Available online: http://www.euro.who.int/_data/assests/pdf_file/0004/123079/AQG2ndEd_6_9Mercury.PDF (accessed on 2 November 2021).
- Schroeder, H. Atmospheric Mercury-an Overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Sommar, J.; Osterwalder, S.; Zhu, W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Sci. Total Environ. 2020, 721, 137648. [Google Scholar] [CrossRef]
- Pataranawat, P.; Parkpian, P.; Polprasert, C.; Delaune, R.D.; Jugsujinda, A. Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2007, 42, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Nevado, J.J.B.; Bermejo, L.F.G.; Martín-Doimeadios, R.C.R. Distribution of mercury in the aquatic environment at Almadén, Spain. Environ. Pollut. 2003, 122, 261–271. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Kodamatani, H.; Hamada, Y.K.; Matsuyama, A.; Imura, R.; Taniguchi, Y.; Hidayati, N.; Rahajoe, J.S. Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ. Sci. Pollut. Res. 2017, 24, 2643–2652. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Elvince, R.; Inoue, T.; Tsushima, K.; Takayanagi, R. Assessment of Mercury Contamination in the Kahayan River, Central Kalimantan, Indonesia. J. Water Environ. Technol. 2008, 6, 103–112. [Google Scholar] [CrossRef] [Green Version]
- World Bank Group. Sources and Uses. In Pollution Preventon and Abatement Handbook; World Bank Group: Washington, DC, USA, 1998; pp. 219–222. [Google Scholar]
- Akagi, H.; Castillo, E.S.; Cortes-Maramba, N.; Francisco-Rivera, A.T.; Timbang, T.D. Health assessment for mercury exposure among schoolchildren residing near a gold processing and refining plant in Apokon, Tagum, Davao del Norte, Philippines. Sci. Total Environ. 2000, 259, 31–43. [Google Scholar] [CrossRef]
- Department of Environment and Natural Resources. Philippine National Standard for Drinking-Water. 1993. Available online: http://www.wepa-db.net/policies/law/philippines/1993std_drinking.htm (accessed on 2 November 2021).
- Department of Environment and Natural Resources. DENR Administrative Order No. 2016-08: Water Quality Guidelines and General Effluent Standards. 2016. Available online: https://server2.denr.gov.ph/uploads/rmdd/dao-2019-12.pdf (accessed on 2 November 2021).
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 2 November 2021).
- Vandal, G.M.; Mason, R.P.; Fitzgerald, W.F. Cycling of Volatile Mercury in Temperate Lakes. Water Air Soil Pollut. 1991, 56, 791–803. [Google Scholar] [CrossRef]
- Wang, S.; Zhong, T.; Chen, D.; Zhang, X. Spatial Distribution of Mercury (Hg) Concentration in Agricultural Soil and Its Risk Assessment on Food Safety in China. Sustainability 2016, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Santos-Francés, F.; García-Sánchez, A.; Alonso-Rojo, P.; Contreras, F.; Adams, M. Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. J. Environ. Manag. 2011, 92, 1268–1276. [Google Scholar] [CrossRef]
- Azevedo, R.; Rodriguez, E. Phytotoxicity of Mercury in Plants: A Review. J. Bot. 2012, 2012, 848614. [Google Scholar] [CrossRef]
- EPA. Soil Screening Guidance: Technical Background Document Soil; EPA: Frankfurt, Germany, 1996. [Google Scholar]
- Lodenius, M. Use of plants for biomonitoring of airborne mercury in contaminated areas. Environ. Res. 2013, 125, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E.; Mierle, G.; Nriagu, J.O. The analysis of vegetation for total mercury. Water Air Soil Pollut. 1991, 56, 379–390. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Ing, J.D.; Fu, W.; Gan, L.; Li, Y. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 2017, 7, 46545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Feng, X.; Larssen, T.; Qiu, G.; Vogt, R.D. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect. 2010, 118, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.; Lihawa, F.; Saleh, Y.; Desei, F.; Banteng, B. Study of mercury concentration in plants in Traditional Buladu Gold Mining. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 12018. [Google Scholar] [CrossRef]
- Sakakibara, M.; Sera, K. Mercury in soil and forage plants from artisanal and small-scale gold mining in the bombana area, Indonesia. Toxics 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Browne, C.L.; Fang, S.C. Uptake of Mercury Vapor by Wheat. Plant Physiol. 1978, 61, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef]
- Rajaee, M.; Obiri, S.; Green, A.; Long, R.; Cobbina, S.J.; Nartey, V.; Buck, D.; Antwi, E.; Basu, N. Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. Int. J. Environ. Res. Public Health 2015, 12, 8971–9011. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Codex General Standard for Contaminants and Toxins in Food and Feed; WHO: Geneva, Switzerland, 2013; pp. 1–48. [Google Scholar]
- Castilhos, Z.C.; Rodriguez-Filho, S.; Rodriguez, A.P.C.; Villas-Boas, R.C.; Siegel, S.; Veiga, M.M.; Beinhoff, C. Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Sci. Total Environ. 2006, 368, 320–325. [Google Scholar] [CrossRef]
- Suckcharoen, S.; Nuorteva, P.; Hasanen, E. Alarming signs of mercury pollution in a freshwater area of Thailand. Ambio 1978, 7, 113–116. [Google Scholar]
- FAO. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption; FAO: Rome, Italy, 2015; pp. 25–29. Available online: http://www.fao.org/docrep/014/ba0136e/ba0136e00.pdf (accessed on 2 November 2021).
- Bentley, K.; Soebandrio, A. Arsenic and mercury concentrations in marine fish sourced from local fishermen and fish markets in mine-impacted communities in Ratatotok Sub-district, North Sulawesi, Indonesia. Mar. Pollut. Bull. 2017, 120, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.P.; Irvine, K.N.; Sampson, M.; Guo, J.; Parr, T. Mercury Contamination along the Mekong River, Cambodia. Asian J. Water Environ. Pollut. 2008, 6, 1–9. [Google Scholar]
- Baran, E.; Jantunen, T.; Kieok, C.C. Values of Inland Fisheries in the Mekong River Basin; WorldFish Center: Phnom Penh, Cambodia, 2007; p. 76. Available online: https://digitalarchive.worldfishcenter.org/bitstream/handle/20.500.12348/1671/WF_895.pdf?sequence=1&isAllowed=y (accessed on 2 November 2021).
- Canham, R.; González-Prieto, A.M.; Elliott, J.E. Mercury Exposure and Toxicological Consequences in Fish and Fish-Eating Wildlife from Anthropogenic Activity in Latin America. Integr. Environ. Assess. Manag. 2021, 17, 13–26. [Google Scholar] [CrossRef]
- Environmental Health Perspectives. Guidance for Identifying Populations at Risk from Mercury Exposure. Exposure 2008, 113, 1381–1385. [CrossRef] [Green Version]
- Loi, V.D.; Gian, T.; Anh, L.; Duc, T.; Huy, T.; Mon, P.; Ha, T.; Mineshi, S. NIMD Forum 2006 II-Current Issue on Mercury Pollution in the Asia-Pacific Region—Mercury Exposure to Workers at Gold Mining and Battery Plants in Vietnam. 2006. Available online: http://nimd.env.go.jp/english/kenkyu/nimd_forum/nimd_forum_2006_II.html (accessed on 4 November 2021).
- Novirsa, R.; Dinh, Q.P.; Jeong, H.; Addai-Arhin, S.; Nugraha, W.C.; Hirota, N.; Wispriyono, B.; Ishibashi, Y.; Arizono, K. The Dietary Intake of Mercury from Rice and Human Health Risk in Artisanal Small-Scale Gold Mining Area, Indonesia. Available online: https://www.jstage.jst.go.jp/article/fts/7/5/7_215/_article/-char/ja/ (accessed on 4 November 2021).
- Salazar-Camacho, C.; Salas-Moreno, M.; Marrugo-Madrid, S.; Marrugo-Negrete, J.; Díez, S. Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environ. Int. 2017, 107, 47–54. [Google Scholar] [CrossRef]
- National Institute for Minamata Disease (NMID), Ministry of Environment, Japan. Mercury and Health; 2013. Available online: http://nimd.env.go.jp/english/kenkyu/docs/Mercury_and_health.pdf (accessed on 2 November 2021).
- Clemente, E.; Sera, K.; Futatsugawa, S.; Murao, S. PIXE analysis of hair samples from artisanal mining communities in the Acupan region, Benguet, Philippines. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2004, 219–220, 161–165. [Google Scholar] [CrossRef]
- Umbangtalad, S.; Parkpian, P.; Visvanathan, C.; Delaune, R.D.; Jugsujinda, A. Assessment of Hg contamination and exposure to miners and schoolchildren at a small-scale gold mining and recovery operation in Thailand. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 2071–2079. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Integrated Risk Information System (IRIS); National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 1999.
- Kobal, A.B.; Tratnik, J.S.; Mazej, D.; Fajon, V.; Gibicar, D.; Miklavcic, A.; Kocman, D.; Kotnik, J.; Briski, A.S.; Osredkar, J.; et al. Exposure to mercury in susceptible population groups living in the former mercury mining town of Idrija, Slovenia. Environ. Res. 2017, 152, 434–445. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Qiu, G.; Fu, X.; Wei, Z. Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China. Atmos. Environ. 2007, 41, 5584–5594. [Google Scholar] [CrossRef]
- Higueras, P.; Oyarzun, R.; Kotnik, J.; Esbri, J.M.; Martinez-Coronado, A.; Horvat, M.; Lopez-Berdonces, M.A.; Llanos, W.; Vaselli, O.; Nisi, B.; et al. A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China. Int. J. Environ. Res. Public Health 2016, 13, 160. [Google Scholar] [CrossRef] [Green Version]
- Guney, M.; Akimzhanova, Z.; Kumisbek, A.; Beisova, K.; Kismelyeva, S.; Satayeva, A.; Inglezakis, V.; Karaca, F. Mercury (HG) contaminated sites in kazakhstan: Review of current cases and site remediation responses. Int. J. Environ. Res. Public Health 2020, 17, 8936. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.J.; Lindberg, S.E.; Tabberer, T.A.; Owens, J.G.; Kim, K.H. Foliar exchange of mercury vapor: Evidence for a compensation point. Water Air Soil Pollut. 1995, 1, 373–382. [Google Scholar] [CrossRef]
- De Temmerman, L.; Waegeneers, N.; Claeys, N.; Roekens, E. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: An important step in terrestrial food chain analysis. Environ. Pollut. 2009, 157, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Sharma, A. Mercury toxicity in plants. Bot. Rev. 2000, 66, 379–422. [Google Scholar] [CrossRef]
- Feng, X.; Qiu, G. Mercury pollution in Guizhou, Southwestern China—An overview. Sci. Total Environ. 2008, 400, 227–237. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Marrugo-Madrid, S.; Pinedo-Hernández, J.; Durango-Hernández, J.; Díez, S. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total Environ. 2016, 542, 809–816. [Google Scholar] [CrossRef]
- Molina, J.A.; Oyarzun, R.; Esbrí, J.M.; Higueras, P. Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on Earth. Environ. Geochem. Health 2006, 28, 487–498. [Google Scholar] [CrossRef]
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- Guédron, S.; Point, D.; Acha, D.; Bouchet, S.; Baya, P.A.; Tessier, E.; Monperrus, M.; Molina, C.I.; Groleau, A.; Chauvaud, L.; et al. Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends. Environ. Pollut. 2017, 231, 262–270. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Feng, X.; Qiu, G.; Shang, L.; Wang, S. Mercury exposure in the population from Wuchuan mercury mining area, Guizhou, China. Sci. Total Environ. 2008, 395, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Zhu, X.; Hao, Y.; Yang, Z.; Wang, Q.; Fu, H.; Yu, H. Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure. J. Environ. Sci. 2017, 8, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Langeland, A.L.; Hardin, R.D.; Neitzel, R.L. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the madre de dios River Basin, Peru. Int. J. Environ. Res. Public Health 2017, 14, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Inorganic Mercury (Environmental Health Criteria), International Program on Chemistry Safety, Vol. 118. WHO. 1991. Available online: https://apps.who.int/iris/handle/10665/40626 (accessed on 4 November 2021).
Participants | Signature Date | Status | Date (Ratification/Accession/Approval) |
---|---|---|---|
Indonesia | 10/10/2013 | Ratification | 09/22/2017 |
The Philippines | 10/10/2013 | Ratification | 8/7/2020 |
Cambodia | 10/10/2013 | Ratification | 8/4/2021 |
Vietnam | 11/10/2013 | Approval | 06/26/2017 |
Malaysia | 24/09/2014 | Signature | |
Laos | Accession | 09/21/2017 | |
Thailand | Accession | 06/22/2017 | |
Brunei | N.A. | N.A. | N.A. |
Myanmar | N.A. | N.A. | N.A. |
Inclusion | Exclusion |
---|---|
Studies related to ASGM communities. | Studies in other industries, such as coal-fired power plant. |
Studies on Hg compounds, total Hg, inorganic Hg, and MeHg. | Unrelated compounds, such as ethylmercury. |
Emphasis on Hg concentration in environmental media (e.g., air, water, and soil) | Measurement of Hg in other environmental media. |
Emphasis on Hg concentrations in biomonitors of plants, fish, and human hair. | Measurement of Hg in other biological indicators. |
Reports relating to human-health risk assessment in ASGM communities. | Reports relating to human-health risk assessment in other industries. |
Location(s) | Sample Sources | n | Hg Concentration (ng/m3) | Reference |
---|---|---|---|---|
Palu city, Sulawesi, Indonesia | Gold-processing area | 21 | 9172 ± 16,422 (mean ± SD) | [26] |
Northern area of city | 514 ± 420 (mean ± SD) | |||
Central area of city | 141 ± 141 (mean ± SD) | |||
Western area of city | 22 ± 15 (mean ± SD) | |||
Southern area of city | 116 ± 135 (mean ± SD) | |||
Mandalay region, Myanmar | ASGM site | 13 | 0–10,900 | [21] |
19 | 0.66–74,000 | |||
Province of Camarines Norte, The Philippines | ASGM site | 4 | 7.8–314,000 | [27] |
Location | Sample Source | Number of Samples | THg Concentration (μg/g) | MeHg Concentration (μg/g) | Reference |
---|---|---|---|---|---|
Mekong River, Cambodia (near O Tron gold mine) | Tonle Srepok | 25 | 4.54 * | N.A. | [60] |
Tonle Kong | 17 | 4.22 * | |||
Mekong N. Stung Treng | 16 | 3.36 * | |||
Mekong Kratie | 20 | 3.47 * | |||
All males | 32 | 5.21 * | |||
All females | 46 | 3.08 * | |||
All adults | 59 | 4.01 * | |||
All children (aged < 13 y) | 19 | 3.38 * | |||
Women Ratanakirri (mine impacted) | 23 | 3.47 * | |||
Women Mekong | 23 | 2.7 * | |||
Lebaksitu, Lebak regency Java Island, Indonesia | ASGM area | 41 | 0.847–9.015 | 0.37–4.33 | [65] |
Mandalay Region, Myanmar | ASGM area (miners and nonminers) | 50 | 0.4–5.7 | N.A. | [21] |
Acupan region, Benguet, the Philippines | ASGM area | 70 | 0–26.6 | N.A. | [68] |
Nong Pra subdistrict, Wang Sai Poon district, Phichit Province, Thailand | Gold miners | 79 | 1.17 ± 0.05 (mean ± SD) | N.A. | [69] |
School children | 59 | 0.93 ± 0.01 (mean ± SD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soe, P.S.; Kyaw, W.T.; Arizono, K.; Ishibashi, Y.; Agusa, T. Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. Int. J. Environ. Res. Public Health 2022, 19, 6290. https://doi.org/10.3390/ijerph19106290
Soe PS, Kyaw WT, Arizono K, Ishibashi Y, Agusa T. Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. International Journal of Environmental Research and Public Health. 2022; 19(10):6290. https://doi.org/10.3390/ijerph19106290
Chicago/Turabian StyleSoe, Pyae Sone, Win Thiri Kyaw, Koji Arizono, Yasuhiro Ishibashi, and Tetsuro Agusa. 2022. "Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries" International Journal of Environmental Research and Public Health 19, no. 10: 6290. https://doi.org/10.3390/ijerph19106290