Resident Willingness to Pay for Ecosystem Services in Hillside Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.1.1. SST
2.1.2. YST
2.1.3. DST
2.2. Methodology
2.2.1. Contingent Valuation Method
2.2.2. Residents and Respondents
2.2.3. Eliciting Process
2.2.4. Embedding Effect
2.2.5. Payment Channel
2.2.6. Estimation Procedure of the Single-Bounded Method
2.2.7. Pilot, Bidding Values, and Survey
3. Results
3.1. Residents’ Agreement with the Ecosystem Services
3.2. Response Statistics of Different Bidding Amounts
3.3. Determinants of Residents’ Willingness to Pay
3.4. Economic Value of the Ecosystem Services
4. Discussion
4.1. Land Zoning Policy and Government Intervention
4.2. Better Governance of Our Full World at Current Anthropocene
4.3. Local Industries and Livelihood of Residents
4.4. Policy Implementation at the Mountain Frontier of Human Activities
4.5. Noncommodification of Nature: Economic Valuation from the Perspective of Ecological Economics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daly, H.E. Economics in a full world. Sci. Am. 2005, 293, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Boulding, K.E. The economics of the coming spaceship earth. In The Earthscan Reader in Environmental Economics; Taylor & Francis: New York, NY, USA, 1966; pp. 1–17. Available online: http://www.ub.edu/prometheus21/articulos/obsprometheus/BOULDING.pdf (accessed on 20 April 2022).
- Goodland, R. The case that the world has reached limits: More precisely that current throughput growth in the global economy cannot be sustained. Popul. Environ. 1992, 13, 167–182. [Google Scholar] [CrossRef]
- Goodland, R.J.; Daly, H.E.; El Serafy, S. Population, Technology, and Lifestyle; Island Press: London, UK, 1992. [Google Scholar]
- Daly, H.E. From empty-world economics to full-world economics: Recognizing an historical turning point in economic development. In Population, Technology, and Lifestyle: The Transition to Sustainability; Goodland, R., Daly, H., El Serafy, S., Eds.; Island Press: Washington, DC, USA, 1992; 154p. [Google Scholar]
- Running, S.W. A measurable planetary boundary for the biosphere. Science 2012, 337, 1458–1459. [Google Scholar] [CrossRef][Green Version]
- Costanza, R.; Cumberland, J.H.; Daly, H.; Goodland, R.; Norgaard, R.B. An Introduction to Ecological Economics, 2nd ed.; CRC Press: New York, NY, USA, 2014. [Google Scholar]
- Yusoff, K. Anthropogenesis: Origins and endings in the Anthropocene. Theory Cult. Soc. 2016, 33, 3–28. [Google Scholar] [CrossRef]
- Bennett, E.M.; Solan, M.; Biggs, R.; McPhearson, T.; Norström, A.V.; Olsson, P.; Pereira, L.; Peterson, G.D.; Raudsepp-Hearne, C.; Biermann, F.; et al. Bright spots: Seeds of a good Anthropocene. Front. Ecol. Environ. 2016, 14, 441–448. [Google Scholar] [CrossRef][Green Version]
- Creutzig, F. Limits to liberalism: Considerations for the Anthropocene. Ecol. Econ. 2020, 177, 106763. [Google Scholar] [CrossRef]
- McPhearson, T.; M Raymond, C.; Gulsrud, N.; Albert, C.; Coles, N.; Fagerholm, N.; Nagatsu, M.; Olafsson, A.S.; Soininen, N.; Vierikko, K. Radical changes are needed for transformations to a good Anthropocene. Npj Urban Sustain. 2021, 1, 5. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Guide to the Millennium Assessment Reports. 2005. Available online: https://www.millenniumassessment.org/en/index.html (accessed on 17 October 2021).
- Yang, H.; Gou, X.; Yin, D. Response of biodiversity, ecosystems, and ecosystem services to climate change in China: A Review. Ecologies 2021, 2, 18. [Google Scholar] [CrossRef]
- Ma, L.; Qin, Y.; Zhang, H.; Zheng, J.; Hou, Y.; Wen, Y. Improving well-being of farmers using ecological awareness around protected areas: Evidence from Qinling region, China. Int. J. Environ. Res. Public Health 2021, 18, 9792. [Google Scholar] [CrossRef]
- Morelli, F.; Tryjanowski, P.; Benedetti, Y. Differences between niches of anthropocentric and biocentric conservationists: Wearing old clothes to look modern? J. Nat. Conserv. 2016, 34, 101–106. [Google Scholar] [CrossRef]
- Liu, J.E.; Wang, Z.; Li, Y. Efficacy of natural polymer derivatives on soil physical properties and erosion on an experimental loess hillslope. Int. J. Environ. Res. Public Health 2018, 15, 9. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zheng, J.; Chen, G.; Zhang, T.; Ding, M.; Liu, B.; Wang, H. Exploring Spatial Variations in the Relationships between Landscape Functions and Human Activities in Suburban Rural Communities: A Case Study in Jiangning District, China. Int. J. Environ. Res. Public Health 2021, 18, 9782. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, F.; Cai, A. Spatiotemporal Trends, Sources and Ecological Risks of Heavy Metals in the Surface Sediments of Weitou Bay, China. Int. J. Environ. Res. Public Health 2021, 18, 9562. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zong, H.; Su, D.; Ping, Z.; Guan, M. Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China. Int. J. Environ. Res. Public Health 2021, 18, 11301. [Google Scholar] [CrossRef]
- Liu, L.; Song, W.; Zhang, Y.; Han, Z.; Li, H.; Yang, D.; Wang, Z.; Huang, Q. Zoning of Ecological Restoration in the Qilian Mountain Area, China. Int. J. Environ. Res. Public Health 2021, 18, 12417. [Google Scholar] [CrossRef]
- Urban and Rural Development Branch, Construction and Planning Agency, Ministry of the Interior, Taiwan (URDB-CPA-MI-T). 2022. Available online: https://ngis.tcd.gov.tw/ (accessed on 7 April 2022).
- Intergovernmental Panel on Climate Change (IPCC). Special Report on Climate Change and Land. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 15 August 2021).
- Hsu, C.L.; Son, P.S. The investigation and discussion on vulnerability of aboriginal township in Pingtung County after Typhoon Morakot. J. Slopeland Hazard Prev. 2011, 10, 1–9. [Google Scholar]
- Yang, M.D.; Lin, J.Y.; Lin, W.J.; Huang, K.S.; Wu, D.Y. Disaster investigation in Chenyulan River Basin during Typhoon Morakot. J. Chin. Soil Water Conserv. 2009, 40, 345–358. [Google Scholar]
- Lee, C.T.; Fei, L.Y. Potential landslide and debris flow hazard prediction in the Lanyang River Basin. J. Adv. Technol. Manag. 2011, 1, 67–83. [Google Scholar]
- Sui, C. BBC News: Why Has Taiwan’s Water Shortage Attracted Worldwide Attention, and How Serious Is It This Time? 2021. Available online: https://www.bbc.com/zhongwen/trad/chinese-news-56814382 (accessed on 5 April 2022).
- Ahmadi, H.; Ghalhari, G.F.; Baaghideh, M. Impacts of climate change on apple tree cultivation areas in Iran. Clim. Change 2019, 153, 91–103. [Google Scholar] [CrossRef]
- Wang, R.H.; Sheu, S.J.; Lin, H.I. Estimating the Elasticity of Demand of Cabbage: An Application of Geographical Climate Information. Taiwan Agric. Econ. Rev. 2020, 26, 1–50. [Google Scholar]
- Yilan County Government, Taiwan. Characteristics of Townships in Yilan County. 2022. Available online: https://www.e-land.gov.tw/cp.aspx?n=9E1BEC13B38E00CE (accessed on 3 April 2022).
- Hanemann, W.M. Welfare evaluations in contingent valuation experiments with discrete responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Cameron, T.A.; James, M.D. Efficient estimation methods for “closed-ended” contingent valuation surveys. Rev. Econ. Stat. 1987, 69, 269–276. [Google Scholar] [CrossRef]
- Cameron, T.A. Interval estimates of non-market resource values from referendum contingent valuation surveys. Land Econ. 1991, 67, 413–421. [Google Scholar] [CrossRef]
- Fattahi Ardakani, A.; Alavi, C.; Arab, M. The comparison of discrete payment vehicle methods (dichotomous choice) in improving the quality of the environment. Int. J. Environ. Sci. Technol. 2017, 14, 1409–1418. [Google Scholar] [CrossRef]
- Alberini, A. Optimal designs for discrete choice contingent valuation surveys: Single-bound, double-bound, and bivariate models. J. Environ. Econ. Manag. 1995, 28, 287–306. [Google Scholar] [CrossRef]
- Venkatachalam, L. The contingent valuation method: A review. Environ. Impact Assess. Rev. 2004, 24, 89–124. [Google Scholar] [CrossRef]
- Carson, R.T.; Hanemann, W.M. Contingent valuation. Handb. Environ. Econ. 2005, 2, 821–936. [Google Scholar]
- Boyle, K.J.; MacDonald, H.F.; Cheng, H.T.; McCollum, D.W. Bid design and yea saying in single-bounded, dichotomous-choice questions. Land Econ. 1998, 74, 49–64. [Google Scholar] [CrossRef]
- Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88. [Google Scholar] [CrossRef]
- Sundar, V.; Subbiah, K. Application of double bounded probability density function for analysis of ocean waves. Ocean Eng. 1989, 16, 193–200. [Google Scholar] [CrossRef]
- Kanninen, B.J. Optimal experimental design for double-bounded dichotomous choice contingent valuation. Land Econ. 1993, 69, 138–146. [Google Scholar] [CrossRef]
- Yoo, S.H.; Yang, H.J. Application of sample selection model to double-bounded dichotomous choice contingent valuation studies. Environ. Resour. Econ. 2001, 20, 147–163. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kwak, S.J. Using a spike model to deal with zero response data from double bounded dichotomous choice contingent valuation surveys. Appl. Econ. Lett. 2002, 9, 929–932. [Google Scholar] [CrossRef]
- Langford, I.H.; Bateman, I.J.; Langford, H.D. A multilevel modelling approach to triple-bounded dichotomous choice contingent valuation. Environ. Resour. Econ. 1996, 7, 197–211. [Google Scholar]
- Bateman, I.J.; Langford, I.H.; Jones, A.P.; Kerr, G.N. Bound and path effects in double and triple bounded dichotomous choice contingent valuation. Resour. Energy Econ. 2001, 23, 191–213. [Google Scholar] [CrossRef]
- Carson, R.T.; Flores, N.E.; Meade, N.F. Contingent valuation: Controversies and evidence. Environ. Resour. Econ. 2001, 19, 173–210. [Google Scholar] [CrossRef]
- Hausman, J.A. (Ed.) Contingent Valuation: A Critical Assessment; North-Holland: New York, NY, USA, 2012. [Google Scholar]
- Weimer, D.L. Behavioral Economics for Cost-Benefit Analysis: Benefit Validity when Sovereign Consumers Seem to Make Mistakes; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Hanemann, M.; Loomis, J.; Kanninen, B. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Scarpa, R.; Bateman, I. Efficiency gains afforded by improved bid design versus follow-up valuation questions in discrete-choice CV studies. Land Econ. 2000, 76, 299–311. [Google Scholar] [CrossRef]
- Nurin Fadhlin, M.H.; Matthew, N.K.; Shuib, A. Visitors’ willingness to pay for entrance fee at Puncak Janing Forest Eco-Park, Kedah, Malaysia. J. Trop. For. Sci. 2021, 33, 49–57. [Google Scholar]
- Pengwei, W.; Linsheng, Z. Tourist willingness to pay for protected area ecotourism resources and influencing factors at the Hulun Lake Protected Area. J. Resour. Ecol. 2018, 9, 174–180. [Google Scholar] [CrossRef]
- Susilo, H.; Takahashi, Y.; Yabe, M. The opportunity cost of labor for valuing mangrove restoration in Mahakam Delta, Indonesia. Sustainability 2017, 9, 2169. [Google Scholar] [CrossRef][Green Version]
- Gould, R.K.; Ricketts, T.H.; Howarth, R.B.; Telle, S.; Gladkikh, T.; Posner, S.; Gourevitch, J.; Yoshida, Y. How ecosystem services research can advance ecological economics principles. In Sustainable Wellbeing Futures: A Research and Action Agenda for Ecological Economics; Costanza, R., Erickson, J.D., Farley, J., Kubiszewski, I., Eds.; Edward Elgar Publishing: Northampton, MA, USA, 2020. [Google Scholar]
- Bishop, R.C.; Heberlein, T.A.; Kealy, M.J. Contingent valuation of environmental assets: Comparison with a stimulated market. Nat. Resour. J. 1983, 23, 619. [Google Scholar]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide research trends in landslide science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar]
- Feng, D.; Liang, L.; Wu, W.; Li, C.; Wang, L.; Li, L.; Zhao, G. Factors influencing willingness to accept in the paddy land-to-dry land program based on contingent value method. J. Clean. Prod. 2018, 183, 392–402. [Google Scholar]
- Ren, Y.; Lu, L.; Zhang, H.; Chen, H.; Zhu, D. Residents’ willingness to pay for ecosystem services and its influencing factors: A study of the Xin’an River basin. J. Clean. Prod. 2020, 268, 122301. [Google Scholar]
- Yu, B.; Xu, L.; Wang, X. Ecological compensation for hydropower resettlement in a reservoir wetland based on welfare change in Tibet, China. Ecol. Eng. 2016, 96, 128–136. [Google Scholar]
- Dupont, D.P. CVM embedding effects when there are active, potentially active and passive users of environmental goods. Environ. Resour. Econ. 2003, 25, 319–341. [Google Scholar]
- Chen, W.J.; Liaw, S.C. Analysis of Yilan County citizens’ opinions on the management of the upper Lanyang River Watershed and evaluation for natural resources. Q. J. Chin. For. 2006, 39, 477–496. [Google Scholar]
- Cameron, T.A. A new paradigm for valuing non-market goods using referendum data: Maximum likelihood estimation by censored logistic regression. J. Environ. Econ. Manag. 1988, 25, 355–379. [Google Scholar] [CrossRef]
- National Development Council. Regional Revitalization. 2022. Available online: https://www.twrr.ndc.gov.tw/index (accessed on 4 April 2022).
- Ministry of Culture of Taiwan. Encyclopedia of Taiwan, Lanyang River. 2022. Available online: https://nrch.culture.tw/twpedia.aspx?id=1501 (accessed on 30 March 2022).
- Pecl, G.; Araujo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fan, J.; Wang, Y.; Hu, C. Study on Ecosystem Service Value (ESV) Spatial Transfer in the Central Plains Urban Agglomeration in the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2021, 18, 9751. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef]
Ecosystem Services | Provision | Regulation | Culture | Support |
---|---|---|---|---|
number of respondents | n = 50 | n = 50 | n = 50 | n = 50 |
mean | 2269 | 2389 | 1927 | 2460 |
percentile | ||||
P20 | 211 | 223 | 500 | 223 |
P30 | 284 | 440 | 500 | 440 |
P50 | 1000 | 1000 | 1000 | 1000 |
P70 | 2000 | 2000 | 2000 | 2000 |
P80 | 3000 | 3000 | 3000 | 3000 |
Likert Scale | 5 | 4 | 3 | 2 | 1 | Total |
---|---|---|---|---|---|---|
Ecosystem services | ||||||
provision | 236 (53.15) | 161 (36.26) | 34 (7.66) | 10 (2.25) | 3 (0.68) | 444 (100) |
regulation | 289 (65.09) | 137 (30.86) | 14 (3.15) | 3 (0.68) | 1 (0.23) | 444 (100) |
culture | 247 (55.63) | 164 (36.94) | 25 (5.63) | 8 (1.8) | 0 (0.00) | 444 (100) |
support | 254 (57.21) | 161 (36.26) | 26 (5.86) | 2 (0.45) | 1 (0.23) | 444 (100) |
Township | SST (n = 89) | YST (n = 136) | DST (n = 219) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Likert Scale | 5 | 4 | 3 | 2 | 1 | 5 | 4 | 3 | 2 | 1 | 5 | 4 | 3 | 2 | 1 |
Ecosystem services | |||||||||||||||
provision | 55 (12.39) | 29 (6.53) | 5 (1.13) | 0 (0.00) | 0 (0.00) | 79 (17.79) | 50 (11.26) | 5 (1.13) | 1 (0.23) | 1 (0.23) | 102 (22.97) | 82 (18.47) | 24 (5.41) | 9 (2.03) | 2 (0.45) |
regulation | 60 (13.51) | 25 (5.63) | 3 (0.68) | 1 (0.23) | 0 (0.00) | 96 (21.62) | 36 (8.11) | 3 (0.68) | 0 (0.00) | 1 (0.23) | 133 (29.95) | 76 (17.12) | 8 (1.80) | 2 (0.45) | 0 (0.00) |
culture | 50 (11.26) | 35 (7.88) | 4 (0.90) | 0 (0.00) | 0 (0.00) | 80 (18.02) | 41 (9.23) | 10 (2.25) | 5 (1.13) | 0 (0.00) | 117 (26.35) | 88 (19.82) | 11 (2.48) | 3 (0.68) | 0 (0.00) |
support | 56 (12.61) | 27 (6.08) | 5 (1.13) | 0 (0.00) | 1 (0.23) | 80 (18.02) | 52 (11.71) | 4 (0.90) | 0 (0.00) | 0 (0.00) | 118 (26.58) | 82 (18.47) | 17 (3.83) | 2 (0.45) | 0 (0.00) |
Townships | SST | YST | DST | Total | ||||
---|---|---|---|---|---|---|---|---|
Bid | Number | % | Number | % | Number | % | Number | % |
250 | 18 | 20.22 | 28 | 20.59 | 42 | 19.18 | 88 | 19.82 |
500 | 17 | 19.10 | 27 | 19.85 | 42 | 19.18 | 86 | 19.37 |
1000 | 18 | 20.22 | 27 | 19.85 | 45 | 20.55 | 90 | 20.27 |
2000 | 18 | 20.22 | 27 | 19.85 | 45 | 20.55 | 90 | 20.27 |
3000 | 18 | 20.22 | 27 | 19.85 | 45 | 20.55 | 90 | 20.27 |
sum | 89 | 100.00 | 136 | 100.00 | 219 | 100.00 | 444 | 100.00 |
Provision | Regulation | Culture | Support | ||||||
---|---|---|---|---|---|---|---|---|---|
Bid | Number of Respondents | Number “Yes” Response | % | Number “Yes” Response | % | Number “Yes” Response | % | Number “Yes” Response | % |
250 | 88 | 52 | 59.09 | 54 | 61.36 | 47 | 53.41 | 51 | 57.95 |
500 | 86 | 45 | 52.33 | 48 | 55.81 | 45 | 52.33 | 45 | 52.33 |
1000 | 90 | 47 | 52.22 | 47 | 52.22 | 44 | 48.89 | 46 | 51.11 |
2000 | 90 | 37 | 41.11 | 35 | 38.89 | 36 | 40.00 | 36 | 40.00 |
3000 | 90 | 32 | 35.56 | 32 | 35.56 | 29 | 32.22 | 32 | 35.56 |
Sum | 444 | 213 | 216 | 201 | 210 | ||||
(%) | (47.97) | (48.65) | (45.27) | (47.30) |
Variable | Definition | Mean (S.D.) | |||
---|---|---|---|---|---|
SST | YST | DST | Total | ||
Binary dependent variable, used to represent the willingness to pay. In the survey, if the respondent indicated “yes”, P(Y) = 1; otherwise, it is 0. | - | - | - | - | |
Constant | - | - | - | - | |
The bidding value (New Taiwan dollar, NTD) | - | - | - | - | |
Agreement with the ecosystem services. * | - | - | - | - | |
Gender dummy, 1, if female 0, if male | 0.56 (0.50) | 0.52 (0.50) | 0.45 (0.50) | 0.50 (0.50) | |
Occupation dummy, 1, those who do not directly depend on local resources for their livelihood, such as those in the military, civil service, and education sector; 0, otherwise. | 0.11 (0.32) | 0.10 (0.31) | 0.09 (0.29) | 0.10 (0.30) | |
Average length of stay per visit (hours) | 1.76 (1.12) | 1.78 (1.16) | 1.79 (1.15) | 1.78 (1.14) | |
= 1 if older resident with low income; otherwise, the value is 0. # | 0.15 (0.36) | 0.14 (0.35) | 0.12 (0.32) | 0.13 (0.34) | |
Yearly household income (10,000 NTD) | 51.40 (33.95) | 56.54 (37.56) | 57.58 (32.82) | 56.02 (34.56) | |
Donation dummy 1, history of donation for environmental protection; 0, otherwise. | 0.21 (0.41) | 0.29 (0.45) | 0.20 (0.40) | 0.23 (0.42) |
Aspects of Ecosystem Services | Provision | Regulation | Culture | Support | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | ||||
−2.3566 | ** | 0.0013 | −2.8351 | ** | 0.0016 | −2.4930 | ** | 0.0017 | −2.5103 | ** | 0.0017 | |
−0.000372 | *** | 0.0004 | −0.000478 | *** | ≦0.0001 | −0.000388 | *** | 0.0002 | −0.000392 | *** | 0.0002 | |
0.4985 | *** | 0.0009 | 0.6071 | ** | 0.0014 | 0.4488 | ** | 0.0062 | 0.5151 | ** | 0.0023 | |
−0.3321 | 0.1157 | −0.4245 | * | 0.0460 | −0.2621 | 0.2130 | −0.3379 | 0.1060 | ||||
−1.1301 | ** | 0.0017 | −1.0476 | ** | 0.0035 | −1.0967 | ** | 0.0028 | −1.0541 | ** | 0.0031 | |
0.1631 | 0.0802 | 0.1975 | * | 0.0355 | 0.2161 | * | 0.0196 | 0.2006 | * | 0.0294 | ||
−1.0980 | ** | 0.0025 | −1.0377 | ** | 0.0034 | −0.8493 | * | 0.0161 | −1.0427 | ** | 0.0030 | |
0.0089 | * | 0.0109 | 0.0097 | ** | 0.0065 | 0.0100 | ** | 0.0040 | 0.0087 | ** | 0.0098 | |
0.8491 | ** | 0.0010 | 0.7813 | ** | 0.0025 | 0.8886 | *** | 0.0005 | 0.6833 | ** | 0.0068 |
Aspects of Ecosystem Services | Provision | Regulation | Culture | Support |
---|---|---|---|---|
2688.17 | 2092.05 | 2577.32 | 2551.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-J.; Jan, J.-F.; Chung, C.-H.; Liaw, S.-C. Resident Willingness to Pay for Ecosystem Services in Hillside Forests. Int. J. Environ. Res. Public Health 2022, 19, 6193. https://doi.org/10.3390/ijerph19106193
Chen W-J, Jan J-F, Chung C-H, Liaw S-C. Resident Willingness to Pay for Ecosystem Services in Hillside Forests. International Journal of Environmental Research and Public Health. 2022; 19(10):6193. https://doi.org/10.3390/ijerph19106193
Chicago/Turabian StyleChen, Wan-Jiun, Jihn-Fa Jan, Chih-Hsin Chung, and Shyue-Cherng Liaw. 2022. "Resident Willingness to Pay for Ecosystem Services in Hillside Forests" International Journal of Environmental Research and Public Health 19, no. 10: 6193. https://doi.org/10.3390/ijerph19106193