Pregnant Women’s Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, D.G.; Bruce, N.; Gordon, S.B. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.R. Fuel Combustion, Air Pollution Exposure, and Health: The Situation in Developing Countries; Annual Reviews Inc.: Palo Alto, CA, USA, 1993. [Google Scholar]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fandiño-Del-Rio, M.; Kephart, J.L.; Williams, K.N.; Moulton, L.H.; Steenland, K.; Checkley, W.; Koehler, K. Household air pollution exposure and associations with household characteristics among biomass cookstove users in Puno, Peru. Environ. Res. 2020, 191, 110028. [Google Scholar] [CrossRef] [PubMed]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Zeliadt, N. QnAs with Kirk R. Smith. Proc. Natl. Acad. Sci. USA 2012, 109, 8357. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Indoor Air Pollution from Solid Fuels and Risk of Low Birth Weight and Stillbirth. Available online: http://apps.who.int/iris/bitstream/handle/10665/43766/9789241505735_eng.pdf;jsessionid=3FF2A7AA0086B235245366AD3EE5BCDC?sequence=1 (accessed on 15 December 2021).
- Perera, F.P.; Whyatt, R.M.; Jedrychowski, W.; Rauh, V.; Manchester, D.; Santella, R.M.; Ottman, R. Recent Developments in Molecular Epidemiology: A Study of the Effects of Environmental Polycyclic Aromatic Hydrocarbons on Birth Outcomes in Poland. Am. J. Epidemiol. 1998, 147, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Tielsch, J.M.; Katz, J.; Thulasiraj, R.D.; Coles, C.L.; Sheeladevi, S.; Yanik, E.L.; Rahmathullah, L. Exposure to indoor biomass fuel and tobacco smoke and risk of adverse reproductive outcomes, mortality, respiratory morbidity and growth among newborn infants in south India. Int. J. Epidemiol. 2009, 38, 1351–1363. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.B.; Meleth, S.; Pasha, O.; Goudar, S.S.; Esamai, F.; Garces, A.L.; Chomba, E.; McClure, E.M.; Wright, L.L.; Koso-Thomas, M.; et al. Impact of exposure to cooking fuels on stillbirths, perinatal, very early and late neonatal mortality—A multicenter prospective cohort study in rural communities in India, Pakistan, Kenya, Zambia and Guatemala. Matern. Health Neonatol. Perinatol. 2015, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Pope, D.P.; Mishra, V.; Thompson, L.; Siddiqui, A.R.; Rehfuess, E.A.; Weber, M.; Bruce, N.G. Risk of Low Birth Weight and Stillbirth Associated With Indoor Air Pollution From Solid Fuel Use in Developing Countries. Epidemiol. Rev. 2010, 32, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Amegah, A.K.; Quansah, R.; Jaakkola, J.J. Household air pollution from solid fuel use and risk of adverse pregnancy outcomes: A systematic review and meta-analysis of the empirical evidence. PLoS ONE 2014, 9, e113920. [Google Scholar] [CrossRef] [PubMed]
- Mavalankar, D.V.; Trivedi, C.R.; Gray, R.H. Levels and risk factors for perinatal mortality in Ahmedabad, India. Bull. World Health Organ. 1991, 69, 435–442. [Google Scholar]
- Mishra, V.; Retherford, R.D.; Smith, K.R. Cooking smoke and tobacco smoke as risk factors for stillbirth. Int. J. Environ. Health Res. 2005, 15, 397–410. [Google Scholar] [CrossRef]
- Siddiqui, A.R.; Gold, E.B.; Yang, X.; Lee, K.; Brown, K.H.; Bhutta, Z.A. Prenatal exposure to wood fuel smoke and low birth weight. Environ. Health Perspect. 2008, 116, 543–549. [Google Scholar] [CrossRef]
- Katz, J.; Lee, A.C.C.; Kozuki, N.; Lawn, J.E.; Cousens, S.; Blencowe, H.; Ezzati, M.; Bhutta, Z.A.; Marchant, T.; Willey, B.A.; et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: A pooled country analysis. Lancet 2013, 382, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Vakalopoulos, A.; Dharmage, S.C.; Dharmaratne, S.; Jayasinghe, P.; Lall, O.; Ambrose, I.; Weerasooriya, R.; Bui, D.S.; Yasaratne, D.; Heyworth, J.; et al. Household Air Pollution from Biomass Fuel for Cooking and Adverse Fetal Growth Outcomes in Rural Sri Lanka. Int. J. Environ. Res. Public Health 2021, 18, 1878. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.; Adu-Bonsaffoh, K.; Vermeulen, R.; Klipstein-Grobusch, K.; Grobbee, D.E.; Browne, J.L.; Downward, G.S. Household fuel use and adverse pregnancy outcomes in a Ghanaian cohort study. Reprod. Health 2020, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- Bruce, N.; Pope, D.; Rehfuess, E.; Balakrishnan, K.; Adair-Rohani, H.; Dora, C. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 2015, 106, 451–457. [Google Scholar] [CrossRef]
- Steenland, K.; Pillarisetti, A.; Kirby, M.; Peel, J.; Clark, M.; Checkley, W.; Chang, H.H.; Clasen, T. Modeling the potential health benefits of lower household air pollution after a hypothetical liquified petroleum gas (LPG) cookstove intervention. Environ. Int. 2018, 111, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Brabhukumr, A.; Malhi, P.; Ravindra, K.; Lakshmi, P.V.M. Exposure to household air pollution during first 3 years of life and IQ level among 6–8-year-old children in India—A cross-sectional study. Sci. Total Environ. 2020, 709, 135110. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Ghosh, S.; Thangavel, G.; Sambandam, S.; Mukhopadhyay, K.; Puttaswamy, N.; Sadasivam, A.; Ramaswamy, P.; Johnson, P.; Kuppuswamy, R.; et al. Exposures to fine particulate matter (PM2.5) and birthweight in a rural-urban, mother-child cohort in Tamil Nadu, India. Environ. Res. 2018, 161, 524–531. [Google Scholar] [CrossRef]
- Grajeda, L.M.; Thompson, L.M.; Arriaga, W.; Canuz, E.; Omer, S.B.; Sage, M.; Azziz-Baumgartner, E.; Bryan, J.P.; McCracken, J.P. Effectiveness of Gas and Chimney Biomass Stoves for Reducing Household Air Pollution Pregnancy Exposure in Guatemala: Sociodemographic Effect Modifiers. Int. J. Environ. Res. Public Health 2020, 17, 7723. [Google Scholar] [CrossRef]
- Estévez-García, J.A.; Schilmann, A.; Riojas-Rodríguez, H.; Berrueta, V.; Blanco, S.; Villaseñor-Lozano, C.G.; Flores-Ramírez, R.; Cortez-Lugo, M.; Pérez-Padilla, R. Women exposure to household air pollution after an improved cookstove program in rural San Luis Potosi, Mexico. Sci. Total Environ. 2020, 702, 134456. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Ae-Ngibise, K.A.; Gould, C.F.; Owusu-Agyei, S.; Mujtaba, M.; Manu, G.; Burkart, K.; Kinney, P.L.; Quinn, A.; Jack, D.W.; et al. The effect of clean cooking interventions on mother and child personal exposure to air pollution: Results from the Ghana Randomized Air Pollution and Health Study (GRAPHS). J. Expo. Sci. Environ. Epidemiol. 2021, 31, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Dix-Cooper, L.; Eskenazi, B.; Romero, C.; Balmes, J.; Smith, K.R. Neurodevelopmental performance among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon monoxide, a marker for exposure to woodsmoke. NeuroToxicology 2012, 33, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Tielsch, J.M.; Khatry, S.K.; Shrestha, L.; Breysse, P.; Zeger, S.L.; Kozuki, N.; Checkley, W.; LeClerq, S.C.; Mullany, L.C. Impact of Improved Biomass and Liquid Petroleum Gas Stoves on Birth Outcomes in Rural Nepal: Results of 2 Randomized Trials. Glob. Health Sci. Pract. 2020, 8, 372. [Google Scholar] [CrossRef]
- Raynes-Greenow, C.; Islam, S.; Khan, J.; Tasnim, F.; Nisha, M.K.; Thornburg, J.; Billah, S.M.; Alam, A. A Feasibility Study Assessing Acceptability and Supply Issues of Distributing LPG Cookstoves and Gas Cylinders to Pregnant Women Living in Rural Bangladesh for Poriborton: The CHANge Trial. Int. J. Environ. Res. Public Health 2020, 17, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanistreet, D.; Hyseni, L.; Puzzolo, E.; Higgerson, J.; Ronzi, S.; Anderson de Cuevas, R.; Adekoje, O.; Bruce, N.; Mbatchou Ngahane, B.; Pope, D. Barriers and Facilitators to the Adoption and Sustained Use of Cleaner Fuels in Southwest Cameroon: Situating ‘Lay’ Knowledge within Evidence-Based Policy and Practice. Int. J. Environ. Res. Public Health 2019, 16, 4702. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.N.; Thompson, L.M.; Sakas, Z.; Hengstermann, M.; Quinn, A.; Díaz-Artiga, A.; Thangavel, G.; Puzzolo, E.; Rosa, G.; Balakrishnan, K.; et al. Designing a comprehensive behaviour change intervention to promote and monitor exclusive use of liquefied petroleum gas stoves for the Household Air Pollution Intervention Network (HAPIN) trial. BMJ Open 2020, 10, e037761. [Google Scholar] [CrossRef]
- Heltberg, R. Fuel switching: Evidence from eight developing countries. Energy Econ. 2004, 26, 869–887. [Google Scholar] [CrossRef]
- Lewis, J.J.; Pattanayak, S.K. Who Adopts Improved Fuels and Cookstoves? A Systematic Review. Environ. Health Perspect. 2012, 120, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Rehfuess, E.A.; Puzzolo, E.; Stanistreet, D.; Pope, D.; Bruce, N.G. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review. Environ. Health Perspect. 2014, 122, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Debbi, S.; Elisa, P.; Nigel, B.; Dan, P.; Eva, R. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review. Int. J. Environ. Res. Public Health 2014, 11, 8228–8250. [Google Scholar] [CrossRef] [Green Version]
- Bhojvaid, V.; Jeuland, M.; Kar, A.; Lewis, J.J.; Pattanayak, S.K.; Ramanathan, N.; Ramanathan, V.; Rehman, I.H. How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand. Int. J. Environ. Res. Public Health 2014, 11, 1341–1358. [Google Scholar] [CrossRef] [PubMed]
- Jeuland, M.; Pattanayak, S.K.; Bluffstone, R. The Economics of Household Air Pollution. Annu. Rev. Resour. Econ. 2015, 7, 81–108. [Google Scholar] [CrossRef] [Green Version]
- Lawless, P.A.; Rodes, C.E. Maximizing data quality in the gravimetric analysis of personal exposure sample filters. J. Air Waste Manag. Assoc. 1999, 49, 1039–1049. [Google Scholar] [CrossRef] [Green Version]
- Lawless, P.A.; Rodes, C.E.; Ensor, D.S. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon. Atmos. Environ. 2004, 38, 3373–3383. [Google Scholar] [CrossRef]
- Lawless, P.; Thornburg, J.; Rodes, C.; Williams, R. Personal exposure monitoring wearing protocol compliance: An initial assessment of quantitative measurement. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sambandam, S.; Mukhopadhyay, K.; Sendhil, S.; Ye, W.; Pillarisetti, A.; Thangavel, G.; Natesan, D.; Ramasamy, R.; Natarajan, A.; Aravindalochanan, V.; et al. Exposure contrasts associated with a liquefied petroleum gas (LPG) intervention at potential field sites for the multi-country household air pollution intervention network (HAPIN) trial in India: Results from pilot phase activities in rural Tamil Nadu. BMC Public Health 2020, 20, 1799. [Google Scholar] [CrossRef]
- Hoque, M.M.; Ashraf, Z.; Kabir, H.; Sarker, E.; Nasrin, S. Meteorological influences on seasonal variations of air pollutants (SO2, NO2, O3, CO, PM2.5, and PM10) in the Dhaka megacity. Am. J. Pure Appl. Biosci. 2020, 2, 15–23. [Google Scholar] [CrossRef]
- Lee, J.; Brooks, N.R.; Tajwar, F.; Burke, M.; Ermon, S.; Lobell, D.B.; Biswas, D.; Luby, S.P. Scalable deep learning to identify brick kilns and aid regulatory capacity. Proc. Natl. Acad. Sci. USA 2021, 118, e2018863118. [Google Scholar] [CrossRef]
- Baul, T.K.; Datta, D.; Alam, A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy 2018, 114, 598–608. [Google Scholar] [CrossRef]
- Islam, M.; Haider, M.Z.; Halim, S.F.B. Health hazard of using mosquito repellent in Khulna city, Bangladesh. J. Econ. Dev. 2020. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Hashim, J.H.; Jalaludin, J.; Hashim, Z.; Goldstein, B.D. Mosquito coil emissions and health implications. Environ. Health Perspect. 2003, 111, 1454–1460. [Google Scholar] [CrossRef]
- Barnes, D.F.; Khandker, S.R.; Samad, H.A. Energy poverty in rural Bangladesh. Energy Policy 2011, 39, 894–904. [Google Scholar] [CrossRef]
- Sarkar, M.A.R.; Islam, S.M.N. Rural energy and its utilization in Bangladesh. Energy 1998, 23, 785–789. [Google Scholar] [CrossRef]
- Lam, N.L.; Chen, Y.; Weyant, C.; Venkataraman, C.; Sadavarte, P.; Johnson, M.A.; Smith, K.R.; Brem, B.T.; Arineitwe, J.; Ellis, J.E.; et al. Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps. Environ. Sci. Technol. 2012, 46, 13531–13538. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, E.D.S.; Asante, K.; Jack, D.W.; Kinney, P.L.; Whyatt, R.M.; Chillrud, S.N.; Abokyi, L.; Zandoh, C.; Owusu-Agyei, S. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana. Environ. Res. 2013, 127, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, N.L.; Smith, K.R.; Gauthier, A.; Bates, M.N. Kerosene: A Review of Household Uses and their Hazards in Low- and Middle-Income Countries. J. Toxicol. Environ. Health Part B 2012, 15, 396–432. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Chartier, R.T.; Mortimer, K.; Dherani, M.; Tafatatha, T. A personal particulate matter exposure monitor to support household air pollution exposure and health studies. In Proceedings of the 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; pp. 817–818. [Google Scholar]
- Checkley, W.; Williams, K.; Kephart, J.; Fandino-Del-Rio, M.; Steenland, K.; Gonzales, G.; Naeher, L.; Harvey, S.; Moulton, L.; Davila-Roman, V. Effects of a Liquefied Petroleum Gas Stove and Continuous Fuel Distribution Intervention on Household Air Pollution Exposures and Cardiopulmonary Outcomes in Puno, Peru. In Health Effects of Air Pollution-Organic Dust/Biomass; American Thoracic Society: New York, NY, USA, 2020; p. A1810. [Google Scholar]
- Chartier, R.; Phillips, M.; Mosquin, P.; Elledge, M.; Bronstein, K.; Nandasena, S.; Thornburg, V.; Thornburg, J.; Rodes, C. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air 2017, 27, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; McCracken, J.P.; Piedrahita, R.; Thompson, L.; Mollinedo, E.; Canuz, E.; De Léon, O.; Díaz-Artiga, A.; Johnson, M.; Clark, M.; et al. The use of bluetooth low energy Beacon systems to estimate indirect personal exposure to household air pollution. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 990–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.; Rea, A.; Vette, A.; Croghan, C.; Whitaker, D.; Stevens, C.; McDow, S.; Fortmann, R.; Sheldon, L.; Wilson, H.; et al. The design and field implementation of the Detroit Exposure and Aerosol Research Study. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 643–659. [Google Scholar] [CrossRef]
- Phillips, M.J.; Smith, E.A.; Mosquin, P.L.; Chartier, R.; Nandasena, S.; Bronstein, K.; Elledge, M.F.; Thornburg, V.; Thornburg, J.; Brown, L.M. Sri Lanka Pilot Study to Examine Respiratory Health Effects and Personal PM2.5 Exposures from Cooking Indoors. Int. J. Environ. Res. Public Health 2016, 13, 791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, S.; Nobles, C.; Kanner, J.; Sherman, S.; Cho, S.-H.; Perkins, N.; Williams, A.; Grobman, W.; Biggio, J.; Subramaniam, A.; et al. Air Pollution Exposure Monitoring among Pregnant Women with and without Asthma. Int. J. Environ. Res. Public Health 2020, 17, 4888. [Google Scholar] [CrossRef]
- Orfaly, R.A.; Frances, J.C.; Campbell, P.; Whittemore, B.; Joly, B.; Koh, H. Train-the-trainer as an Educational Model in Public Health Preparedness. J. Public Health Manag. Pract. 2005, 11, S123–S127. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Response | Number |
---|---|---|
Primary household cook | Study participant | 30 |
Kitchen location | Separate building used as kitchen | 26 |
(Traditional stove) | Home, separate room from sleeping | 1 |
Home, same room used for sleeping | 0 | |
Outdoor | 3 | |
Primary stove | Traditional, clay stove | 30 |
Stove used other than cooking | No | 30 |
Typical cooking fuels used | Cow dung | 28 |
Wood, bamboo | 28 | |
Straw, leaves, crop residue | 27 | |
Husks, grass | 11 | |
Kerosene | 0 | |
LPG | 0 | |
Electricity | 2 | |
Other | 2 | |
Smoking inside home | Yes | 16 |
No | 14 | |
Number of smokers | 1 | 11 |
2 | 5 |
PM2.5 (μg/m3) | BC (μg/m3) | BrC-ETS (μg/m3) | ||||
---|---|---|---|---|---|---|
Baseline | Intervention | Baseline | Intervention | Baseline | Intervention | |
Mean | 81.3 | 75.3 | 56.4 | 68.7 | 4.1 * | 0.2 * |
SD | 43.8 | 19.0 | 20.2 | 14.8 | 7.6 | 0.7 |
Median | 63.1 | 91.7 | 54.0 | 67.2 | 0 | 0 |
IQR | 59.0 | 23.5 | 24.3 | 21.0 | 5.7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thornburg, J.; Islam, S.; Billah, S.M.; Chan, B.; McCombs, M.; Abbott, M.; Alam, A.; Raynes-Greenow, C. Pregnant Women’s Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial. Int. J. Environ. Res. Public Health 2022, 19, 482. https://doi.org/10.3390/ijerph19010482
Thornburg J, Islam S, Billah SM, Chan B, McCombs M, Abbott M, Alam A, Raynes-Greenow C. Pregnant Women’s Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial. International Journal of Environmental Research and Public Health. 2022; 19(1):482. https://doi.org/10.3390/ijerph19010482
Chicago/Turabian StyleThornburg, Jonathan, Sajia Islam, Sk Masum Billah, Brianna Chan, Michelle McCombs, Maggie Abbott, Ashraful Alam, and Camille Raynes-Greenow. 2022. "Pregnant Women’s Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial" International Journal of Environmental Research and Public Health 19, no. 1: 482. https://doi.org/10.3390/ijerph19010482
APA StyleThornburg, J., Islam, S., Billah, S. M., Chan, B., McCombs, M., Abbott, M., Alam, A., & Raynes-Greenow, C. (2022). Pregnant Women’s Exposure to Household Air Pollution in Rural Bangladesh: A Feasibility Study for Poriborton: The CHANge Trial. International Journal of Environmental Research and Public Health, 19(1), 482. https://doi.org/10.3390/ijerph19010482