Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description
2.2. Assessment of As Exposures
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Association of Seafood Consumption and Blood As Concentrations
4.2. Consumption of Fruits, Vegetables and Blood As Concentrations
4.3. Role of GST Genes in Blood As Concentrations of Jamaican Children with and without the Consumption of Avocado
4.4. Role of Parental Education in Blood As Concentrations
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, V.D.; Vucic, E.A.; Becker-Santos, D.D.; Gil, L.; Lam, W.L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 2011, 431287. [Google Scholar] [CrossRef] [Green Version]
- Garza-Lombó, C.; Pappa, A.; Panayiotidis, M.I.; Gonsebatt, M.E.; Franco, R. Arsenic-induced neurotoxicity: A mechanistic appraisal. J. Biol. Inorg. Chem. 2019, 24, 1305–1316. [Google Scholar] [CrossRef]
- Winterbottom, E.F.; Fei, D.L.; Koestler, D.C.; Giambelli, C.; Wika, E.; Capobianco, A.J.; Lee, E.; Marsit, C.J.; Karagas, M.R.; Robbins, D.J. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth. EBioMedicine 2015, 2, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Hossain, F.; Sulaiman, R.; Ren, X. Exposure to Inorganic Arsenic and Lead and Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. Chem. Res. Toxicol. 2019, 32, 1904–1919. [Google Scholar] [CrossRef]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Iyer, S.; Sengupta, C.; Velumani, A. Blood arsenic: Pan-India prevalence. Clin. Chim. Acta 2016, 455, 99–101. [Google Scholar] [CrossRef]
- Hashim, D.; Boffetta, P. Occupational and environmental exposures and cancers in developing countries. Ann. Glob. Health 2014, 80, 393–411. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Lanphear, B.; Muckle, G.; Bouchard, M.F.; Fisher, M.; Asztalos, E.; Foster, W.; Kuhle, S. Blood metal levels and early childhood anthropometric measures in a cohort of Canadian children. Environ. Res. 2019, 179, 108736. [Google Scholar] [CrossRef] [PubMed]
- Islam, L.N.; Nabi, A.H.; Rahman, M.M.; Khan, M.A.; Kazi, A.I. Association of clinical complications with nutritional status and the prevalence of leukopenia among arsenic patients in Bangladesh. Int. J. Environ. Res. Public Health 2004, 1, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhao, W.; Ye, L.; Chen, Z.; Cui, Y. Postnatal low-concentration arsenic exposure induces autism-like behavior and affects frontal cortex neurogenesis in rats. Environ. Toxicol. Pharmacol. 2018, 62, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, M.; Alvarez, J.; Mayorga, T.; Dominguez, S.; Sobin, C. A comparison of arsenic exposure in young children and home water arsenic in two rural West Texas communities. BMC Public Health 2017, 17, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClintock, T.R.; Chen, Y.; Bundschuh, J.; Oliver, J.T.; Navoni, J.; Olmos, V.; Lepori, E.V.; Ahsan, H.; Parvez, F. Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Sci. Total Environ. 2012, 429, 76–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Ardjomand-Hessabi, M.; Loveland, K.A.; Dickerson, A.S.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; et al. The role of drinking water sources, consumption of vegetables and seafood in relation to blood arsenic concentrations of Jamaican children with and without Autism Spectrum Disorders. Sci. Total Environ. 2012, 433, 362–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, P.; Voutchkov, M.; Chan, H.M. Risk-Benefit Assessment for Total Mercury, Arsenic, Selenium, and Omega-3 Fatty Acids Exposure from Fish Consumption in Jamaica. Biol. Trace Elem. Res. 2020, 197, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculturre Organization of the United Nations (FAO). Fishery and Aquaculture Country Profiles. Jamaica. Country Profile Factsheet; Food and Agriculturre Organization of the United Nations: Rome, Italy, 2016; Available online: https://www.fao.org/fishery/docs/DOCUMENT/fcp/en/FI_CP_PG.pdf (accessed on 10 October 2021).
- Food and Agriculturre Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All; Food and Agriculturre Organization of the United Nations: Rome, Italy, 2016; p. 200. Available online: https://www.fao.org/3/i5555e/i5555e.pdf (accessed on 10 October 2021).
- Lalor, G.; Rattray, R.; Simpson, P.; Vutchkov, M. Geochemistry of an arsenic anomaly in St. Elizabeth, Jamaica. Environ. Geochem. Health 1999, 21, 3–11. [Google Scholar] [CrossRef]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef]
- Engel, B.; Lalor, G.C.; Vutchkov, M.K. Spatial pattern of arsenic and lead distributions in Jamaican soils. Environ. Geochem. Health 1996, 18, 105–111. [Google Scholar] [CrossRef]
- Adams, M.; Bolger, P.; Gunderson, E. Dietary intake and hazards of arsenic. In Arsenic: Exposure and Health; Abernathy, C.O., Cothern, C.R., Eds.; Science and Technology Letters: Northwood, UK, 1994; pp. 41–49. [Google Scholar]
- Signes-Pastor, A.J.; Vioque, J.; Navarrete-Muñoz, E.M.; Carey, M.; García-Villarino, M.; Fernández-Somoano, A.; Tardón, A.; Santa-Marina, L.; Irizar, A.; Casas, M.; et al. Inorganic arsenic exposure and neuropsychological development of children of 4–5 years of age living in Spain. Environ. Res. 2019, 174, 135–142. [Google Scholar] [CrossRef]
- Khan, S.I.; Ahmed, A.K.; Yunus, M.; Rahman, M.; Hore, S.K.; Vahter, M.; Wahed, M.A. Arsenic and cadmium in food-chain in Bangladesh—An exploratory study. J. Health Popul. Nutr. 2010, 28, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Navasumrit, P.; Chaisatra, K.; Ruchirawat, M. Arsenic projects in SE Asia. Rev. Environ. Health 2016, 31, 11–12. [Google Scholar] [CrossRef]
- Thompson, D.S.; Younger-Coleman, N.; Lyew-Ayee, P.; Greene, L.G.; Boyne, M.S.; Forrester, T.E. Socioeconomic factors associated with severe acute malnutrition in Jamaica. PLoS ONE 2017, 12, e0173101. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, J.; Liu, B.; Liu, X.; Yu, X. Prenatal exposure to arsenic and neurobehavioral development of newborns in China. Environ. Int. 2018, 121, 421–427. [Google Scholar] [CrossRef]
- Davis, M.A.; Higgins, J.; Li, Z.; Gilbert-Diamond, D.; Baker, E.R.; Das, A.; Karagas, M.R. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ. Health 2015, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ. Health Perspect 2006, 114, 1293–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Islam, K.N.; Ibrahim, M.; Masunaga, S. Arsenic and lead in foods: A potential threat to human health in Bangladesh. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2014, 31, 1982–1992. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Ardjomand-Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of metabolic genes in blood arsenic concentrations of Jamaican children with and without autism spectrum disorder. Int. J. Environ. Res. Public Health 2014, 11, 7874–7895. [Google Scholar] [CrossRef] [Green Version]
- Drobná, Z.; Del Razo, L.M.; Garcia-Vargas, G.; Sánchez-Ramírez, B.; González-Horta, C.; Ballinas-Casarrubias, L.; Loomis, D.; Stýblo, M. Identification of the GST-T1 and GST-M1 null genotypes using high resolution melting analysis. Chem. Res. Toxicol. 2012, 25, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Seidegård, J.; Ekström, G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ. Health Perspect 1997, 105, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Josephy, P.D. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum. Genom. Proteom. 2010, 2010, 876940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naranmandura, H.; Suzuki, N.; Suzuki, K.T. Trivalent Arsenicals Are Bound to Proteins during Reductive Methylation. Chem. Res. Toxicol. 2006, 19, 1010–1018. [Google Scholar] [CrossRef]
- Hayakawa, T.; Kobayashi, Y.; Cui, X.; Hirano, S. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Marcos, R.; Martínez, V.; Hernández, A.; Creus, A.; Sekaran, C.; Tokunaga, H.; Quinteros, D. Metabolic profile in workers occupationally exposed to arsenic: Role of GST polymorphisms. J. Occup. Environ. Med. 2006, 48, 334–341. [Google Scholar] [CrossRef]
- Hayes, J.D.; Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef]
- Garrecht, M.; Austin, D.W. The plausibility of a role for mercury in the etiology of autism: A cellular perspective. Toxicol. Environ. Chem. 2011, 93, 1251–1273. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Vijayaraghavalu, S.; Kumar, M. Genetic Polymorphisms of Xenobiotic Metabolizing Genes (GSTM1, GSTT1, GSTP1), Gene-Gene Interaction with Association to Lung Cancer Risk in North India; A Case Control Study. Asian Pac. J. Cancer Prev. 2019, 20, 2707–2714. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Zhang, J.; Hessabi, M.; Bressler, J.; Bach, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between a Mixture of Heavy Metals (Lead, Mercury, Arsenic, Cadmium, Manganese, Aluminum) and GSTP1, GSTT1, and GSTM1 in Relation to Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2020, 79, 101681. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Christian, M.A.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakespeare-Pellington, S.; Desai, C.C.; Reece, J.A.; et al. Interaction between manganese and GSTP1 in relation to autism spectrum disorder while controlling for exposure to mixture of lead, mercury, arsenic, and cadmium. Res. Autism. Spectr. Disord. 2018, 55, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Boerwinkle, E. Factors associated with blood lead concentrations of children in Jamaica. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2015, 50, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M.; Bailey, A.; Lord, C. The Social Communication Questionnaire: Manual; Western Psychological Services: Torrance, CA, USA, 2003. [Google Scholar]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Lee, M.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; et al. Role of fruits, grains, and seafood consumption in blood cadmium concentrations of Jamaican children with and without Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2014, 8, 1134–1145. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Hessabi, M.; Bressler, J.; Gillani, S.; Grove, M.L.; Shakespeare-Pellington, S.; Loveland, K.A. Correlation between concentrations of four heavy metals in cord blood and childhood blood of Jamaican children. J. Environ. Sci. Health Part A 2021, 56, 1196–1205. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Logistic Regression: A Self-Learning Text, 3rd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- SAS® 9.4. SAS Institute Inc.: Cary, NC, USA, 2013.
- Miklavčič, A.; Casetta, A.; Snoj Tratnik, J.; Mazej, D.; Krsnik, M.; Mariuz, M.; Sofianou, K.; Spirić, Z.; Barbone, F.; Horvat, M. Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ. Res. 2013, 120, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Liu, J.; Ye, B.; Ren, A. Concentrations of selected heavy metals in maternal blood and associated factors in rural areas in Shanxi Province, China. Environ. Int. 2014, 66, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Tatsuno, I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J. Atheroscler. Thromb. 2020, 27, 183–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazahery, H.; Stonehouse, W.; Delshad, M.; Kruger, M.C.; Conlon, C.A.; Beck, K.L.; von Hurst, P.R. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Fabian, C.J.; Kimler, B.F.; Hursting, S.D. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015, 17, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Hernández, Á.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Ruiz-Suárez, N.; Valerón, P.F.; Almeida González, M.; Zaccaroni, A.; Zumbado, M.; Luzardo, O.P. Assessment of human health hazards associated with the dietary exposure to organic and inorganic contaminants through the consumption of fishery products in Spain. Sci. Total Environ. 2016, 557–558, 808–818. [Google Scholar] [CrossRef]
- Kalantzi, I.; Mylona, K.; Sofoulaki, K.; Tsapakis, M.; Pergantis, S.A. Arsenic speciation in fish from Greek coastal areas. J. Environ. Sci. 2017, 56, 300–312. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Cilloni, S.; Wise, L.A.; Violi, F.; Malagoli, C.; Vescovi, L.; Vinceti, M. Intake of arsenic and mercury from fish and seafood in a Northern Italy community. Food Chem. Toxicol. 2018, 116, 20–26. [Google Scholar] [CrossRef]
- Gao, Y.; Baisch, P.; Mirlean, N.; Rodrigues da Silva Júnior, F.M.; Van Larebeke, N.; Baeyens, W.; Leermakers, M. Arsenic speciation in fish and shellfish from the North Sea (Southern bight) and Açu Port area (Brazil) and health risks related to seafood consumption. Chemosphere 2018, 191, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.H.; Lalor, G.C.; Preston, J.; Robotham, H.; Thompson, C.; Vutchkov, M.K. Heavy metals in Jamaican surface soils. Environ. Geochem. Health 1996, 18, 113–121. [Google Scholar] [CrossRef]
- Lalor, G. Geochemical mapping in Jamaica. Environ. Geochem. Health 1996, 18, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Howe, A.; Fung, L.H.; Lalor, G.; Rattray, R.; Vutchkov, M. Elemental composition of Jamaican foods 1: A survey of five food crop categories. Environ. Geochem. Health 2005, 27, 19–30. [Google Scholar] [CrossRef]
- Reddy, M.; Moodley, R.; Jonnalagadda, S.B. Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality. Environ. Monit. Assess. 2014, 186, 4519–4529. [Google Scholar] [CrossRef]
- Yañez, L.M.; Alfaro, J.A.; Avila Carreras, N.M.E.; Bovi Mitre, G. Arsenic accumulation in lettuce (Lactuca sativa L.) and broad bean (Vicia faba L.) crops and its potential risk for human consumption. Heliyon 2019, 5, e01152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, Y.; Sumi, D. Arsenic: Signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 243–262. [Google Scholar] [CrossRef]
- González-Martínez, F.; Sánchez-Rodas, D.; Varela, N.M.; Sandoval, C.A.; Quiñones, L.A.; Johnson-Restrepo, B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. Int. J. Mol. Sci. 2020, 21, 4832. [Google Scholar] [CrossRef]
- Caceres, D.D.; Werlinger, F.; Orellana, M.; Jara, M.; Rocha, R.; Alvarado, S.A.; Luis, Q. Polymorphism of glutathione S-transferase (GST) variants and its effect on distribution of urinary arsenic species in people exposed to low inorganic arsenic in tap water: An exploratory study. Arch. Environ. Occup. Health 2010, 65, 140–147. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Del Razo, L.M.; Limón-Pacheco, J.H.; Giordano, M.; Sánchez-Peña, L.C.; Uribe-Querol, E.; Gutiérrez-Ospina, G.; Gonsebatt, M.E. Glutathione Reductase Inhibition and Methylated Arsenic Distribution in Cd1 Mice Brain and Liver. Toxicol. Sci. 2004, 84, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Stýblo, M.; Thomas, D.J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochem. Pharmacol. 1995, 49, 971–977. [Google Scholar] [CrossRef]
- Styblo, M.; Serves, S.V.; Cullen, W.R.; Thomas, D.J. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 1997, 10, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Chouchane, S.; Snow, E.T. In vitro effect of arsenical compounds on glutathione-related enzymes. Chem. Res. Toxicol. 2001, 14, 517–522. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkol, O.; Adams, C.; Ercal, N. Biologically important thiols in various vegetables and fruits. J. Agric. Food Chem. 2004, 52, 8151–8154. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.N.; Niedzwiecki, M.; Liu, X.; Harper, K.N.; Alam, S.; Slavkovich, V.; Ilievski, V.; Levy, D.; Siddique, A.B.; Parvez, F.; et al. Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ. Health Perspect 2013, 121, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Kong, Y.; Gao, W.; Mo, L. Effects of Socioeconomic Status, Parent-Child Relationship, and Learning Motivation on Reading Ability. Front. Psychol. 2018, 9, 1297. [Google Scholar] [CrossRef]
- Eick, S.M.; Ferreccio, C.; Acevedo, J.; Castriota, F.; Cordero, J.F.; Roh, T.; Smith, A.H.; Smith, M.T.; Steinmaus, C. Socioeconomic status and the association between arsenic exposure and type 2 diabetes. Environ. Res. 2019, 172, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Hajat, A.; Diez-Roux, A.V.; Adar, S.D.; Auchincloss, A.H.; Lovasi, G.S.; O’Neill, M.S.; Sheppard, L.; Kaufman, J.D. Air pollution and individual and neighborhood socioeconomic status: Evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect 2013, 121, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Argos, M.; Parvez, F.; Chen, Y.; Hussain, A.Z.; Momotaj, H.; Howe, G.R.; Graziano, J.H.; Ahsan, H. Socioeconomic status and risk for arsenic-related skin lesions in Bangladesh. Am. J. Public Health 2007, 97, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.V.; Spayd, S.E.; Procopio, N.A.; Marvinney, R.G.; Smith, A.E.; Chillrud, S.N.; Braman, S.; Zheng, Y. Arsenic in private well water part 3 of 3: Socioeconomic vulnerability to exposure in Maine and New Jersey. Sci. Total. Environ. 2016, 562, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Agusa, T.; Kunito, T.; Tue, N.M.; Lan, V.T.; Fujihara, J.; Takeshita, H.; Minh, T.B.; Trang, P.T.; Takahashi, S.; Viet, P.H.; et al. Individual variations in arsenic metabolism in Vietnamese: The association with arsenic exposure and GSTP1 genetic polymorphism. Metallomics 2012, 4, 91–100. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Chen, Y.; Factor-Litvak, P.; LoIacono, N.J.; Levy, D.; Shahriar, H.; Uddin, M.N.; Islam, T.; et al. A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ. Int. 2018, 118, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Categories | n (%) |
---|---|---|
Child’s sex | Male | 307 (81.9) |
Female | 68 (18.1) | |
Child’s age (months) | Age < 72 | 281 (74.9) |
Age ≥ 72 | 94 (25.1) | |
Child’s race | Afro-Caribbean | 365 (97.3) |
Parish of child’s birth | Kingston parish | 232 (61.9) |
Other parishes a | 143 (38.1) | |
Maternal age (at child’s birth) b | Age < 35 | 326 (88.4) |
Age ≥ 35 | 43 (11.6) | |
Parental education level c | Both up to high school d | 199 (54.5) |
At least one beyond high school e | 166 (45.5) | |
Socioeconomic status (SES) | High SES (own a car) | 151 (40.3) |
GSTT1f | DD i | 92 (25.8) |
I/I or I/D j | 264 (74.2) | |
GSTM1g | DD i | 89 (24.9) |
I/I or I/D j | 268 (75.1) | |
GSTP1h | Ile/Ile | 96 (26.7) |
Ile/Val | 182 (50.7) | |
Val/Val | 81 (22.6) |
Exposure Variables | Categories | ≥LoD (n = 221) | <LoD (n = 154) | OR (95% CI) | p Value a | |
---|---|---|---|---|---|---|
Child’s gender | Male | 183 (82.8) | 124 (80.5) | 1.17 (0.69, 1.98) | 0.57 | |
Child’s age (months) | Age ≥ 72 | 70 (31.7) | 24 (15.6) | 2.51 (1.49, 4.22) | <0.01 | |
Child’s race | Afro-Caribbean | 216 (97.7) | 149 (96.8) | 1.45 (0.41, 5.10) | 0.56 | |
Place of child’s birth | Kingston parish | 144 (65.2) | 88 (57.1) | 1.40 (0.92, 2.14) | 0.12 | |
Maternal age (at child’s birth) b | Age ≥ 35 | 25 (11.6) | 18 (11.7) | 0.99 (0.52, 1.89) | 0.98 | |
Parental education level c | At least one beyond high school d | 80 (37.0) | 86 (57.7) | 0.43 (0.28, 0.66) | <0.01 | |
Socioeconomic status (SES) | High SES (own a car) | 79 (35.8) | 72 (46.8) | 0.63 (0.42, 0.96) | 0.03 | |
GSTT1e | DD g | 48 (23.2) | 44 (29.5) | 0.72 (0.45, 1.16) | 0.18 | |
I/I or I/D h | 159 (76.8) | 105 (70.5) | REF | |||
GSTM1f | DD g | 51 (24.6) | 38 (25.3) | 0.96 (0.59,1.56) | 0.88 | |
I/I or I/D h | 156 (75.4) | 112 (74.7) | REF | |||
GSTP1i | Ile/Ile | 54 (25.8) | 42 (28.0) | REF | ||
Ile/Val | 106 (50.7) | 76 (50.7) | 1.08 (0.66, 1.79) | 0.75 | ||
Val/Val | 49 (23.5) | 32 (21.3) | 1.19 (0.65, 2.17) | 0.57 | ||
Living near a high traffic road | 80 (36.2) | 65 (42.2) | 0.78 (0.51, 1.18) | 0.24 | ||
Pica (habitually put items in mouth) | Mud j | 19 (8.7) | 4 (2.6) | 3.56 (1.19, 10.69) | 0.02 | |
Source of drinking water k | Piped water | 208 (94.6) | 150 (97.4) | 0.46 (0.15, 1.46) | 0.19 | |
Source of cooking water l | Piped water | 210 (95.4) | 152 (98.7) | 0.28 (0.06, 1.28) | 0.10 | |
Seafood consumption | Saltwater fish | 139 (76.5) | 91 (59.1) | 2.25 (1.44, 3.52) | <0.01 | |
Freshwater fish (Pond fish, Tilapia) | 81 (36.6) | 39 (25.3) | 1.71 (1.08, 2.69) | 0.02 | ||
Sardine, mackerel (Canned fish) | 194 (87.8) | 122 (79.2) | 1.89 (1.08, 3.30) | 0.03 | ||
Tuna (Canned fish) | 87 (39.4) | 48 (31.2) | 1.43 (0.93, 2.22) | 0.10 | ||
Salt fish (Pickled mackerel) | 181 (81.9) | 114 (74.0) | 1.59 (0.97, 2.61) | 0.07 | ||
Shellfish (Lobster, Crab) | 29 (13.1) | 19 (12.3) | 1.07 (0.58, 1.99) | 0.82 | ||
Shrimp | 42 (19.0) | 24 (15.6) | 1.27 (0.73, 2.20) | 0.39 | ||
Organ/meat consumption | Liver | 152 (68.8) | 80 (52.0) | 2.04 (1.33, 3.12) | <0.01 | |
Grain and starches consumption | White rice or rice and peas | 216 (97.7) | 152 (98.7) | 0.57 (0.11, 2.97) | 0.50 | |
Fried dumpling (Festival dumpling) | 188 (85.1) | 116 (75.3) | 1.87 (1.11, 3.14) | 0.02 | ||
Boiled dumpling | 194 (87.8) | 143 (92.9) | 0.55 (0.27, 1.15) | 0.11 | ||
White bread | 139 (62.9) | 109 (70.8) | 0.70 (0.45, 1.09) | 0.11 | ||
Whole wheat bread | 147 (66.5) | 92 (59.7) | 1.34 (0.87, 2.05) | 0.18 | ||
Cakes/Buns | 195 (88.2) | 124 (80.5) | 1.82 (1.03, 3.21) | 0.04 | ||
Porridge (cornmeal, oatmeal) | 201 (90.9) | 142 (92.2) | 0.85 (0.40, 1.79) | 0.67 | ||
Cold breakfast cereal | 177 (80.1) | 124 (80.5) | 0.46 (0.58, 1.63) | 0.92 | ||
Pasta, macaroni, noodles | 184 (83.3) | 141 (91.6) | 0.46 (0.24, 0.90) | 0.02 | ||
Beans | Peas, beans, nuts | Red peas, gungo peas | 191 (86.4) | 108 (70.1) | 2.71 (1.62, 4.55) | <0.01 |
Broad beans | 158 (71.5) | 66 (42.9) | 3.34 (2.17, 5.15) | <0.01 | ||
Peanuts, cashews | 179 (81.0) | 115 (74.7) | 1.45 (0.88, 2.37) | 0.14 | ||
Fruits and vegetables consumption | Root vegetables | Yam, sweet potato, dasheen, coco | 146 (66.1) | 113 (73.4) | 0.71 (0.45, 1.11) | 0.13 |
Carrot, pumpkin | 195 (88.2) | 130 (84.4) | 1.39 (0.76, 2.52) | 0.29 | ||
Leafy vegetables | Lettuce | 153 (69.2) | 81 (52.6) | 2.03 (1.32, 3.11) | <0.01 | |
Callaloo, broccoli, or pakchoi | 195 (88.2) | 112 (72.7) | 2.81 (1.64, 4.83) | <0.01 | ||
Cabbage | 125 (56.6) | 108 (70.1) | 0.56 (0.36, 0.86) | <0.01 | ||
Legumes | String beans | 120 (54.3) | 42 (27.3) | 3.17 (2.04, 4.93) | <0.01 | |
Fruit | Tomatoes | 180 (81.4) | 100 (64.9) | 2.37 (1.48, 3.81) | <0.01 | |
Ackee | 149 (67.4) | 110 (71.4) | 0.83 (0.53, 1.30) | 0.41 | ||
Avocado | 158 (71.5) | 71 (46.1) | 2.93 (1.91, 4.51) | <0.01 | ||
Green banana | 148 (67.0) | 117 (76.0) | 0.64 (0.40, 1.02) | 0.06 | ||
Fried plantain | 190 (86.0) | 128 (83.1) | 1.25 (0.71, 2.20) | 0.45 |
Environmental Factor | Category Compared | Referent Category | Gene | Models | Genotypes | OR (95%CI) | p Value a | Overall Interaction p Value b |
---|---|---|---|---|---|---|---|---|
Child’s gender | Male | Female | GSTM1 c | Recessive | DD e | 3.75 (1.18, 11.94) | 0.03 | 0.02 |
I/I or I/D f | 0.75 (0.39, 1.44) | 0.39 | ||||||
GSTP1 d | Co-dominant | Ile/Ile | 0.46 (0.13, 1.60) | 0.22 | 0.07 | |||
Ile/Val | 1.18 (0.58, 2.40) | 0.64 | ||||||
Val/Val | 4.29 (1.02, 18.07) | 0.047 | ||||||
Dominant | Ile/Ile | 0.46 (0.13, 1.60) | 0.22 | 0.09 | ||||
Val/Val or Ile/Val | 1.56 (0.84, 2.91) | 0.16 | ||||||
Recessive | Val/Val | 4.29 (1.02, 18.07) | 0.047 | 0.052 | ||||
Ile/Ile or Ile/Val | 0.92 (0.50, 1.68) | 0.78 | ||||||
Parish of child’s birth | Kingston | Other g | GSTT1 b | Recessive | DD e | 0.74 (0.32, 1.71) | 0.49 | 0.06 |
I/I or I/D f | 1.91 (1.15, 3.17) | 0.01 | ||||||
GSTP1 h | Co-dominant | Ile/Ile | 0.71 (0.29, 1.73) | 0.45 | 0.01 | |||
Ile/Val | 2.76 (1.50, 5.08) | <0.01 | ||||||
Val/Val | 0.74 (1.83, 0.43) | 0.51 | ||||||
Dominant | Ile/Ile | 0.71 (0.29, 1.73) | 0.45 | 0.07 | ||||
Val/Val or Ile/Val | 1.83 (1.11, 3.02) | 0.02 | ||||||
Recessive | Val/Val | 0.74 (0.30, 1.83) | 0.51 | 0.1 | ||||
Ile/Ile or Ile/Val | 1.75 (1.07, 2.86) | 0.03 | ||||||
Parental education level i | Group 1 j | Group 2 k | GSTP1 h | Co-dominant | Ile/Ile | 1.07 (0.47, 2.41) | 0.88 | 0.057 |
Ile/Val | 3.04 (1.64, 5.65) | <0.01 | ||||||
Val/Val | 4.38 (1.61, 11.92) | <0.01 | ||||||
Dominant | Ile/Ile | 1.07 (0.47, 2.41) | 0.88 | 0.02 | ||||
Val/Val or Ile/Val | 3.31 (1.96, 5.57) | <0.01 | ||||||
Recessive | Val/Val | 4.38 (1.61, 11.92) | <0.01 | 0.19 | ||||
Ile/Ile or Ile/Val | 2.09 (1.28, 3.42) | <0.01 | ||||||
Consumption of ackee | Yes | No | GSTP1 h | Co-dominant | Ile/Ile | 1.78 (0.76, 4.15) | 0.18 | 0.09 |
Ile/Val | 0.66 (0.34, 1.28) | 0.22 | ||||||
Val/Val | 0.48 (0.17, 1.34) | 0.16 | ||||||
Dominant | Ile/Ile | 1.78 (0.76, 4.15) | 0.18 | 0.03 | ||||
Val/Val or Ile/Val | 0.6 (0.34, 1.04) | 0.07 | ||||||
Recessive | Val/Val | 0.48 (0.17, 1.34) | 0.16 | 0.23 | ||||
Ile/Ile or Ile/Val | 0.96 (0.58, 1.62) | 0.89 | ||||||
Consumption of avocado | Yes | No | GSTP1 h | Co-dominant | Ile/Ile | 7.04 (2.85, 17.37) | <0.01 | 0.09 |
Ile/Val | 2.12 (1.15, 3.88) | 0.01 | ||||||
Val/Val | 2.72 (1.05, 7.05) | 0.04 | ||||||
Dominant | Ile/Ile | 7.04 (2.85, 17.37) | <0.01 | 0.03 | ||||
Val/Val or Ile/Val | 2.28 (1.37, 3.81) | <0.01 | ||||||
Recessive | Val/Val | 2.72 (1.05, 7.05) | 0.04 | 0.79 | ||||
Ile/Ile or Ile/Val | 3.16 (1.92, 5.20) | <0.01 |
Models | Environmental Factor | Categories Compared | Gene | Genotypes | OR (95%CI) | p Value a | |
---|---|---|---|---|---|---|---|
Additive multivariable model | Child’s age (months) | Age ≥ 72 vs. Age < 72 | 2.27 (1.27, 4.07) | <0.01 | |||
Parental education level b | Group 1 c vs. Group 2 d | 1.82 (1.12, 2.97) | 0.01 | ||||
Consumption of saltwater fish | Yes vs. no | 1.99 (1.18, 3.34) | <0.01 | ||||
Consumption of cabbage | Yes vs. no | 0.47 (0.28, 0.81) | <0.01 | ||||
Consumption of beans | Yes vs. no | 2.72 (1.65, 4.48) | <0.01 | ||||
Consumption of avocado | Yes vs. no | 2.18 (1.32, 3.60) | <0.01 | ||||
Interactive multivariable model | Co-dominant | Child’s age (months) | Age ≥ 72 vs. Age < 72 | 2.41 (1.33, 4.38) | <0.01 | ||
Parental education level b | Group 1 c vs. Group 2 d | 2.01 (1.21, 3.32) | <0.01 | ||||
Consumption of saltwater fish | Yes vs. No | 1.96 (1.15, 3.34) | 0.01 | ||||
Consumption of cabbage | Yes vs. No | 0.47 (0.27, 0.82) | <0.01 | ||||
Consumption of beans | Yes vs. No | 2.89 (1.74, 4.82) | <0.01 | ||||
Consumption of avocado e | Yes vs. No | GSTP1 f | Ile/Ile | 7.44 (2.75, 20.10) | <0.01 | ||
Ile/Val | 1.17 (0.58, 2.34) | 0.66 | |||||
Val/Val | 1.87 (0.61, 5.75) | 0.27 | |||||
Dominant | Child’s age (months) | Age ≥ 72 vs. Age < 72 | 2.37 (1.31, 4.30) | <0.01 | |||
Parental education level b | Group 1 c vs. Group 2 d | 2.01 (1.22, 3.32) | <0.01 | ||||
Consumption of saltwater fish | Yes vs. no | 1.93 (1.14, 3.27) | 0.01 | ||||
Consumption of cabbage | Yes vs. no | 0.48 (0.28, 0.83) | <0.01 | ||||
Consumption of beans | Yes vs. no | 2.92 (1.75, 4.86) | <0.01 | ||||
Consumption of avocado g | Yes vs. no | GSTP1 f | Ile/Ile | 7.43 (3.77, 20.07) | <0.01 | ||
Val/Val or Ile/Val | 1.33 (0.73, 2.42) | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbar, M.H.; Samms-Vaughan, M.; Zhao, Y.; Saroukhani, S.; Zaman, S.F.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A. Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica. Int. J. Environ. Res. Public Health 2022, 19, 466. https://doi.org/10.3390/ijerph19010466
Rahbar MH, Samms-Vaughan M, Zhao Y, Saroukhani S, Zaman SF, Bressler J, Hessabi M, Grove ML, Shakspeare-Pellington S, Loveland KA. Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica. International Journal of Environmental Research and Public Health. 2022; 19(1):466. https://doi.org/10.3390/ijerph19010466
Chicago/Turabian StyleRahbar, Mohammad H., Maureen Samms-Vaughan, Yuansong Zhao, Sepideh Saroukhani, Sheikh F. Zaman, Jan Bressler, Manouchehr Hessabi, Megan L. Grove, Sydonnie Shakspeare-Pellington, and Katherine A. Loveland. 2022. "Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica" International Journal of Environmental Research and Public Health 19, no. 1: 466. https://doi.org/10.3390/ijerph19010466