Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instruments
2.3. Procedure
2.3.1. Estimation of 1RM in the Half-Squat Exercise
2.3.2. Vertical Jump
2.3.3. Activation Protocol
2.3.4. PAPE Monitoring during a Volleyball Match
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, D.; Palmas, L.; Quiroga, M.E.; Palmas, L.; Miralles, J.A.; Palmas, L.; Canaria, D.G.; García-Manso, J.M.; Palmas, L.; Rodriguez-Ruiz, D.; et al. Study of the Technical and Tactical Variables Determining Set Win or Loss in Top-Level European Men’s Volleyball. J. Quant. Anal. Sports 2011, 7, 7. [Google Scholar] [CrossRef]
- Palao, J.M.; Manzanares, P.; Valadés, D. Way of scoring of Spanish first division volleyball teams in relation to winning/losing, home/away, final classification, and type of confrontation. J. Hum. Sport Exerc. 2015, 10, 36–46. [Google Scholar] [CrossRef]
- Silva, M.; Marcelino, R.; Lacerda, D.; João, P.V. Match Analysis in Volleyball: A systematic review. Monten. J. Sports Sci. 2016, 5, 35–46. [Google Scholar]
- Yu, Y.; García-de-alcaraz, A.; Wang, L.; Liu, T. Analysis of winning determinant performance indicators according to teams level in Chinese women’ s volleyball. Int. J. Perform. Anal. Sport 2018, 18, 750–763. [Google Scholar] [CrossRef]
- Toselli, S.; Campa, F. Anthropometry and Functional Movement Patterns in Elite Male Volleyball Players of Different Competitive Levels. J. Strength Cond. Res. 2018, 32, 2601–2611. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Forza, J. Complex Training for Volleyball: An Original Article. Strength Cond. 2019, 27, 71–77. [Google Scholar]
- Holmberg, P.M. Weightlifting to Improve Volleyball Performance. Strength Cond. J. 2017, 35, 79–88. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Dello Iacono, A.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; Loturco, I.; Behm, D.G. A New Taxonomy for Postactivation Potentiation in Sport. Int. J. Sports Physiol. Perform. 2020, 15, 1–4. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; López-Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: A pilot study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, H.B.; Macintodh, B.R.; Pupo, J.D. Does postactivation potentiation (PAP) increase voluntary performance? Appl. Physiol. Nutr. Metab. 2020, 45, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Maffiuletti, N.A.; Granacher, U. Postactivation potentiation of the plantar flexors does not directly translate to jump performance in female elite young soccer players. Front. Physiol. 2018, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- FIVB. Official Volleyball Rules 2017–2020; de Volleyball, F.I., Ed.; FIVB: Lausanne, Switzerland, 2014. [Google Scholar]
- Forza, J. Complex training for volleyball: A Critical Review. Strength Cond. 2018, 26, 57–63. [Google Scholar]
- Pagaduan, J.; Pojskic, H. A Meta-Analysis on the Effect of Complex Training on Vertical Jump Performance. J. Hum. Kinet. 2020, 71, 255–265. [Google Scholar] [CrossRef]
- Sale, D. Postactivation potentiation: Role in performance. Br. J. Sports Med. 2004, 33, 196–198. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Xenofondos, A.; Laparidis, K.; Kyranoudis, A.; Bassa, E.; Kotzamanidis, C.; Performance, S.; Science, S.; Science, S. Post-activation potentiation: Factors affeecting it and the effect on performance. J. Phys. Educ. Sport 2010, 28, 32–38. [Google Scholar]
- Seitz, L.; Trajano, G.S.; Maso, F.D.; Haff, G.G.; Blazevich, A.J. Post-activation potentiation during voluntary contractions after continued knee extensor task-specific practice. Appl. Physiol. Nutr. Metab. 2015, 40, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Ah Sue, R.; Adams, K.; DeBeliso, M. Optimal Timing for Post-Activation Potentiation in Women Collegiate Volleyball Players. Sports 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Lamont, H.S.; Moir, G.L. Understanding Vertical Jump Potentiation: A Deterministic Model. Sports Med. 2016, 46, 809–828. [Google Scholar] [CrossRef]
- Picón-martínez, M.; Chulvi-medrano, I.; Cortell-tormo, J.M.; Cardozo, L.A. La potenciación post-activación en el salto vertical: Una revisión Post-activation potentiation in vertical jump: A review. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación 2019, 2041, 44–51. [Google Scholar] [CrossRef]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Met-Analysis of Postactivation Potentiation and Power: Effects of Conditioning Activity, Volume, gender, rest periods, and training status. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, W.; Tolusso, D.; Fedewa, M.; Esco, M. Effect of Postactivation Potentiation on Explosive Vertical Jump: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2019, 33, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Healy, R.; Comyns, T.M. The application of postactivation potentiation methods to improve sprint speed. Strength Cond. J. 2019, 33, 2009–2018. [Google Scholar] [CrossRef]
- Hilfiker, R.; Hubner, K.; Lorenz, T.; Marti, B. Effects of drop jumps added to the warm-up of elite sport athletes with a high capacity for explosive force development. J. Strength Cond. Res. 2007, 21, 550–555. [Google Scholar]
- Sañudo, B.; de Hoyo, M.; Haff, G.G.; Muñoz-López, A. Article influence of strength level on the acute post-activation performance enhancement following flywheel and free weight resistance training. Sensors 2020, 20, 7156. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Molina, S.; Salgado-Ramírez, U.; Chulvi-Medrano, I.; Carbone, L.; Maroto-Izquierdo, S.; Benítez-Porres, J. Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PLoS ONE 2021, 16, e0260866. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Bautista, I.J.; Rivera, F.M. Post-activation performance enhancement (PAPE) after a single bout of high-intensity flywheel resistance training. Biol. Sport 2020, 37, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.J.; Silva, A.S.; Baganha, R.J.; Barbosa, C.G.R.; Silva, J.A.O.; Dias, R.M.; Oliveira, L.H.S.; Pereira, A.A.; Ribeiro, A.G.S.V.; Pertille, A. Effect of Different Post-Activation Potentiation Intensities on Vertical Jump Performance in University Volleyball Players. Off. Res. J. Am. Soc. Exerc. Physiol. 2018, 21, 90–100. [Google Scholar]
- Chen, Z.R.; Lo, S.L.; Wang, M.H.; Yu, C.F.; Peng, H. Te Can Different Complex Training Improve the Individual Phenomenon of Post-Activation Potentiation? J. Hum. Kinet. 2017, 56, 167–175. [Google Scholar] [CrossRef]
- Maraboli, P.Q.; Garrido, A.B.; Hernández, C.A.; Guerra, S.C.; González, S.U. Jump height increase in university voleyball players. Apunt. Educ. Física Y Deport. 2016, 4, 64–71. [Google Scholar] [CrossRef][Green Version]
- Krzysztofik, M.; Kalinowski, R.; Trybulski, R.; Filip-Stachnik, A.; Stastny, P. Enhancement of Countermovement Jump Performance Using a Heavy Load with Velocity-Loss Repetition Control in Female Volleyball Players. Int. J. Environ. Res. Public Health 2021, 18, 11530. [Google Scholar] [CrossRef]
- Arabatzi, F.; Patikas, D.; Zafeiridis, A.; Kotzamanidis, C.M. The Post-Activation Potentiation Effect on Squat Jump Performance: Age and Sex Effect. Pediatr. Exerc. Sci. 2014, 26, 187–194. [Google Scholar] [CrossRef]
- Rixon, K.P.; Lamont, H.S.; Bemben, M.G. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J. Strength Cond. Res. 2007, 21, 500–505. [Google Scholar]
- López Villar, C.; Alvariñas Villaverde, M. Análisis muestrales desde una perspectiva de género en revistas de investigación de Ciencias de la Actividad Física y del Deporte españolas. Apunt. Educ. Física Y Deport. 2011, 62–70. [Google Scholar] [CrossRef][Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373. [Google Scholar] [CrossRef]
- Pueo, B.; Penichet-Tomas, A.; Jimenez-Olmedo, J.M. Reliability and validity of the Chronojump open-sourcejump mat system. Biol. Sport 2020, 37, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castilla, A.; Jerez-Mayorga, D.; Martínez-García, D.; Rodríguez-Perea, Á.; Chirosa-Ríos, L.J.; García-Ramos, A. Comparison of the bench press one-repetition maximum obtained by different procedures: Direct assessment vs. lifts-to-failure equations vs. two-point method. Int. J. Sport. Sci. Coach. 2020, 15, 337–346. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Morán-Navarro, R.; Sánchez-Medina, L.; González-Badillo, J.J.; Pallarés, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Nibali, M.L.; Chapman, D.W.; Robergs, R.A.; Drinkwater, E.J. Validation of jump squats as a practical measure of post-activation potentiation. Appl. Physiol. Nutr. Metab. 2013, 313, 306–313. [Google Scholar] [CrossRef]
- de Oliveira, J.J.; Verlengia, R.; Barbosa, C.G.R.; Sindorf, M.A.G.; da Rocha, G.L.; Lopes, C.R.; Crisp, A.H. Effects of post-activation potentiation and carbohydrate mouth rinse on repeated sprint ability. J. Hum. Sport Exerc. 2018, 14, 159–169. [Google Scholar] [CrossRef]
- McCann, M.R.; Flanagan, S.P. The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J. Strength Cond. Res. 2010, 24, 1285–1291. [Google Scholar] [CrossRef]
- Sanchez-Lopez, S.; Rodriguez-Perez, M.A. Effects of different protocols of Post-Activation Potentiation on Performance in the Vertical Jump, in relation to the F-V Profile in Female Elite Handball Players. E-Balonmano.com Rev. Ciencias Deport. 2018, 14, 16–17. [Google Scholar]
- Robbins, D.W. Postactivation potentiation and its practical applicability: A brief review. J. Strength Cond. Res. 2005, 19, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Vandenboom, R. Modulation of skeletal muscle contraction by myosin phosphorylation. Compr. Physiol. 2017, 7, 171–212. [Google Scholar] [CrossRef]
- Suchomel, T.; Sato, K.; DeWeese, B.; Ebben, W.; Stone, M. Potentiation effects of half-squats performed in a ballistic or nonballistic manner. J. Strength Cond. Res. 2016, 30, 1652–1660. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sport. Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef] [PubMed]
- Cairns, S.P.; Borrani, F. β-Adrenergic modulation of skeletal muscle contraction: Key role of excitation-contraction coupling. J. Physiol. 2015, 593, 4713–4727. [Google Scholar] [CrossRef]
- Evetovich, T.K.; Conley, D.S.; McCawley, P.F. Postactivation potentiation enhances upper- and lower-body atheltic performance in collegiate male and female athletes. J. Strength Cond. Res. 2015, 29, 336–342. [Google Scholar] [CrossRef]
- Wallace, B.J.; Shapiro, R.; Wallace, K.L.; Mark, G.A.; Symons, T.B. Muscular and neural contributions to postactivation potentiation. J. Strength Cond. Res. 2019, 33, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Choon, Y.N.; Chen, S.E.; Lum, D. Inducing Postactivation Potentiation With Different Modes of Exercise. Strength Cond. J. 2019, 42, 63–81. [Google Scholar] [CrossRef]
- Saez Saez de Villarreal, E.; González-Badillo, J.J.; Izquierdo, M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur. J. Appl. Physiol. 2007, 100, 393–401. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Rossi, F.E.; Colognesi, L.A.; de Oliveira, J.V.N.S.; Zanchi, N.E.; Lira, F.S.; Cholewa, J.M.; Gobbo, L.A. Postactivation potentiation improves acute resistance exercise performance and muscular force in trained men. J. Strength Cond. Res. 2021, 35, 1357–1363. [Google Scholar] [CrossRef]
- Seitz, L.; Villareal, E.; Haff, G. The temporal profile os postactivation potentiation is related to streght level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, D.J.; Dawson, B.; Clarke, M.; Peeling, P. Can changes in resistance exercise workload influence internal load, countermovement jump performance and the endocrine response? J. Sports Sci. 2017, 36, 191–197. [Google Scholar] [CrossRef]
- Boullosa, D.; Abreu, L.; Beltrame, L.G.; Behm, D.G. The acute effect of different half squad set configurations on jump potentiation. J. Strength Cond. Res. 2013, 27, 2059–2066. [Google Scholar] [CrossRef]
- Pérez-López, A.; Valadés, D. Bases fisiológicas del calentamiento en voleibol: Propuesta práctica (Physiological Basis of Volleyball Warm-Up: Practical Proposal). Cult. Cienc. Y Deporte 2013, 8, 31–40. [Google Scholar] [CrossRef]
Experimental (n = 6) | Control (n = 5) | Total | |
---|---|---|---|
Age (years) | 21.33 ± 3.0 | 23.2 ± 3.8 | 22.2 ± 3.3 |
Height (cm) | 171.3 ± 7.0 | 172.4 ± 8.7 | 171.8 ± 7.8 |
Body mass (kg) | 64.0 ± 5.3 | 63.0 ± 3.8 | 63.5 ± 4.5 |
BMI (kg/m2) | 21.8 ± 5.3 | 21.3 ± 2.0 | 21.6 ± 1.6 |
Volleyball Experience (years) | 8.8 ± 2.7 | 11.0 ± 2.6 | 9.8 ± 2.7 |
Strength Experience (years) | 3.2 ± 1.8 | 3.2 ± 2.0 | 3.2 ± 1.9 |
CMJ Experimental (cm) n = 6 | CMJ Control (cm) n = 5 | p | ES (d) | |
---|---|---|---|---|
Pre-PAPE | 34.08 ± 3.98 | 31.35 ± 4.28 | 0.302 | 0.66 [Moderate] |
Post-PAPE | 35.40 ± 3.69 * | 29.61 ± 4.10 | 0.036 | 1.49 [Large] |
Pre-Match | 37.10 ± 4.09 *# | 31.38 ± 3.99 | 0.045 | 1.41 [Large] |
Set 1 | 38.84 ± 4.74 *# | 31.22 ±2.61 | 0.011 | 1.94 [Large] |
Set 2 | 41.37 ± 4.91 *# | 32.75 ±4.47 | 0.015 | 1.83 [Large] |
Set 3 | 39.15 ± 4.19 # | 34.60 ± 4.43 # | 0.115 | 1.05 [Large] |
Set 4 | 37.66 ± 3.98 # | 32.76 ± 2.44 | 0.073 | 1.23 [Large] |
Set 5 | 38.11 ± 5.40 *# | 34.32 ± 3.26 # | 0.205 | 0.83 [Moderate] |
Experimental | Control | |||
---|---|---|---|---|
p | ES (d) | p | ES (d) | |
Pre-PAPE vs. Post-PAPE | 0.147 | 0.70 [Moderate] | 0.127 | 0.87 [Moderate] |
Pre-PAPE vs. Pre-Match | 0.005 | 1.94 [Large] # | 0.922 | 0.04 [Trivial] |
Pre-PAPE vs. Set 1 | 0.002 | 2.31 [Large] # | 0.903 | 0.05 [Trivial] |
Pre-PAPE vs. Set 2 | 0.004 | 2.08 [Large] # | 0.069 | 1.10 [Large] |
Pre-PAPE vs. Set 3 | 0.002 | 2.40 [Large] # | 0.009 | 2.14 [Large] # |
Pre-PAPE vs. Set 4 | 0.012 | 1.60 [Large] # | 0.313 | 0.51 [Moderate] |
Pre-PAPE vs. Set 5 | 0.013 | 1.53 [Large] # | 0.046 | 1.28 [Large] # |
Pre-Match vs. Set 1 | 0.106 | 0.62 [Moderate] | 0.834 | 0.09 [Trivial] |
Pre-Match vs. Set 2 | 0.022 | 1.50 [Large] # | 0.050 | 0.74 [Moderate] |
Pre-Match vs. Set 3 | 0.057 | 0.79 [Moderate] | 0.003 | 1.76 [Large] # |
Pre-Match vs. Set 4 | 0.508 | 0.01 [Trivial] | 0.268 | 0.76 [Moderate] |
Pre-Match vs. Set 5 | 0.503 | 0.36 [Low] | 0.015 | 1.61 [Large] # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalon-Gasch, L.; Penichet-Tomas, A.; Sebastia-Amat, S.; Pueo, B.; Jimenez-Olmedo, J.M. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. Int. J. Environ. Res. Public Health 2022, 19, 462. https://doi.org/10.3390/ijerph19010462
Villalon-Gasch L, Penichet-Tomas A, Sebastia-Amat S, Pueo B, Jimenez-Olmedo JM. Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. International Journal of Environmental Research and Public Health. 2022; 19(1):462. https://doi.org/10.3390/ijerph19010462
Chicago/Turabian StyleVillalon-Gasch, Lamberto, Alfonso Penichet-Tomas, Sergio Sebastia-Amat, Basilio Pueo, and Jose M. Jimenez-Olmedo. 2022. "Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players" International Journal of Environmental Research and Public Health 19, no. 1: 462. https://doi.org/10.3390/ijerph19010462
APA StyleVillalon-Gasch, L., Penichet-Tomas, A., Sebastia-Amat, S., Pueo, B., & Jimenez-Olmedo, J. M. (2022). Postactivation Performance Enhancement (PAPE) Increases Vertical Jump in Elite Female Volleyball Players. International Journal of Environmental Research and Public Health, 19(1), 462. https://doi.org/10.3390/ijerph19010462