Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Body Model
2.2. Electromagnetic Computational Method
2.3. Neuronal Activation Computational Models
2.4. Strength-Duration (S-D) Curve
2.5. Experimental Stimulation Thresholds
2.6. Computational Exposure Scenarios
3. Results
3.1. S-D Curve Response of Nerve Model
3.2. Distribution of Hotspots of Internal Electric Field
3.3. Electrostimulation Threshold Based on Nerve Orientation
3.4. Comparison with Protection Limits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998, 74, 494–522. [Google Scholar]
- ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Safety Levels with Respect to Human Exposure to Electromagnetic Fields, 0–3 kHz; IEEE: Piscataway, NJ, USA, 2002. [Google Scholar]
- IEEE Std C95.1-2019. IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- IEC62110. Electric and Magnetic Field Levels Generated by AC Power Systems—Measurement Procedures with Regard to Public Exposure; IEC: Geneva, Switzerland, 2009. [Google Scholar]
- IEC62233. Measurement Methods for Electromagnetic Fields of Household Appliances and Similar Apparatus with Regard to Human Exposure; IEC: Geneva, Switzerland, 2005. [Google Scholar]
- Reilly, J.P.; Antoni, H.; Chilbert, M.A.; Sweeney, J.D. Applied Bioelectricity: From Electrical Stimulation to Electropathology; Springer: New York, NY, USA, 1998; 580p. [Google Scholar]
- Havel, W.; Nyenhuis, J.; Bourland, J.; Foster, K.; Geddes, L.; Graber, G.; Waninger, M.; Schaefer, D. Comparison of rectangular and damped sinusoidal db/dt waveforms in magnetic stimulation. IEEE Trans. Magn. 1997, 33, 4269–4271. [Google Scholar] [CrossRef]
- So, P.P.M.; Stuchly, M.A.; Nyenhuis, J.A. Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging. IEEE Trans. Biomed. Eng. 2004, 51, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Boer, J.A.D.; Bourland, J.D.; Nyenhuis, J.A.; Ham, C.L.; Engels, J.M.; Hebrank, F.X.; Frese, G.; Schaefer, D.J. Comparison of the threshold for peripheral nerve stimulation during gradient switching in whole body MR systems. J. Magn. Reson. Imaging 2002, 15, 520–525. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection. Gaps in knowledge relevant to the “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz–100 kHz)”. Health Phys. 2020, 118, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.P.; Hirata, A. Low-frequency electrical dosimetry: Research agenda of the IEEE International Committee on Electromagnetic Safety. Phys. Med. Biol. 2016, 61, R138–R149. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, E.; Oikonomidis, I.V.; Iacono, M.I.; Angelone, L.M.; Kainz, W.; Kuster, N. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation. Phys. Med. Biol. 2016, 61, 4466–4478. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.; Guérin, B.; Malzacher, M.; Schad, L.R.; Wald, L.L. Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body Models. Sci. Rep. 2017, 7, 5316. [Google Scholar] [CrossRef]
- Roemer, P.B.; Wade, T.; Alejski, A.; McKenzie, C.A.; Rutt, B.K. Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils. Magn. Reson. Med. 2021, 86, 2301–2315. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Tames, J.; Hirata, A.; Tamura, M.; Muragaki, Y. Corticomotoneuronal Model for Intraoperative Neurophysiological Monitoring During Direct Brain Stimulation. Int. J. Neural Syst. 2019, 29, 1850026. [Google Scholar] [CrossRef]
- Laakso, I.; Matsumoto, H.; Hirata, A.; Terao, Y.; Hanajima, R.; Ugawa, Y. Multi-scale simulations predict responses to non-invasive nerve root stimulation. J. Neural Eng. 2014, 11, 56013. [Google Scholar] [CrossRef]
- Tanaka, S.; Gomez-Tames, J.; Wasaka, T.; Inui, K.; Ueno, S.; Hirata, A. Electrical Characterisation of Aδ-Fibres Based on Human In Vivo Electrostimulation Threshold. Front. Neurosci. 2020, 14, 1305. [Google Scholar] [CrossRef]
- Gomez-Tames, J.; Tani, K.; Hayashi, K.; Tanaka, S.; Ueno, S.; Hirata, A. Dosimetry Analysis in Non-brain Tissues During TMS Exposure of Broca’s and M1 Areas. Front. Neurosci. 2021, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Tames, J.; Tarnaud, T.; Miwa, K.; Hirata, A.; Van De Steene, T.; Martens, L.; Tanghe, E.; Joseph, W. Brain Cortical Stimulation Thresholds to Different Magnetic Field Sources Exposures at Intermediate Frequencies. IEEE Trans. Electromagn. Compat. 2019, 61, 1944–1952. [Google Scholar] [CrossRef]
- Soldati, M.; Mikkonen, M.; Laakso, I.; Murakami, T.; Ugawa, Y.; Hirata, A. A multi-scale computational approach based on TMS experiments for the assessment of electro-stimulation thresholds of the brain at intermediate frequencies. Phys. Med. Biol. 2018, 63, 225006. [Google Scholar] [CrossRef]
- Nagaoka, T.; Watanabe, S.; Sakurai, K.; Kunieda, E.; Watanabe, S.; Taki, M.; Yamanaka, Y. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys. Med. Biol. 2004, 49, 1–15. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laakso, I.; Hirata, A. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation. Phys. Med. Biol. 2012, 57, 7753–7765. [Google Scholar] [CrossRef]
- Taguchi, K.; Laakso, I.; Aga, K.; Hirata, A.; Diao, Y.; Chakarothai, J.; Kashiwa, T. Relationship of external field strength with local and whole-body averaged specific absorption rates in anatomical human models. IEEE Access 2018, 6, 70186–70196. [Google Scholar] [CrossRef]
- Dawson, T.W.; Stuchly, M.A. Analytic validation of a three-dimensional scalar-potential finite-difference code for low-frequency magnetic induction. Appl. Comput. Electromagn. Soc. J. 1996, 11, 72–81. [Google Scholar]
- Hirata, A.; Ito, F.; Laakso, I. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system. Phys. Med. Biol. 2013, 58, N241–N249. [Google Scholar] [CrossRef]
- Dimbylow, P.J. Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body. Phys. Med. Biol. 1998, 43, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Gomez-Tames, J.; Rashed, E.A.; Kavet, R.; Hirata, A. Spatial Averaging Schemes of in Situ Electric Field for Low-Frequency Magnetic Field Exposures. IEEE Access 2019, 7, 184320–184331. [Google Scholar] [CrossRef]
- McNeal, D.R. Analysis of a model for excitation of myelinated nerve. IEEE Trans. Biomed. Eng. 1976, 4, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, J.D.; Mortimer, J.T.; Durand, D. Modeling of Mammalian Myelinated Nerve for Functional Neuromuscular Stimulation. In Proceedings of the IEEE 9th Annual Conference of the IEEE/Engineering in Medicine and Biology Society, Boston, MA, USA, 13–16 November 1987; Institute of Electrical and Electronics Engineers: New York, NY, USA, 1987; Volume 3, pp. 1577–1578. [Google Scholar]
- Chiu, S.Y.; Ritchie, J.M. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature 1980, 284, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.P. Survey of numerical electrostimulation models. Phys. Med. Biol. 2016, 61, 4346–4363. [Google Scholar] [CrossRef] [PubMed]
- Nyenhuis, J.A.; Bourland, J.D.; Kildishev, A.V.; Schaefer, D.J. Health effects and safety of intense gradient fields. In Magnetic Resonance Procedures: Health Effects and Safety; CRC Press: Boca Raton, FL, USA, 2000; pp. 31–53. [Google Scholar]
- Bostock, H. The strength-duration relationship for excitation of myelinated nerve: Computed dependence on membrane parameters. J. Physiol. 1983, 341, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Maccabee, P.J.; Amassian, V.E.; Eberle, L.P.; Cracco, R.Q. Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: Locus of excitation. J. Physiol. 1993, 460, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.P. Electrical Models for Neural Excitation Studies. Johns Hopkins APL Tech. Dig. 1984, 9, 44–59. [Google Scholar]
- Kuhn, A.; Keller, T.; Lawrence, M.; Morari, M. A model for transcutaneous current stimulation: Simulations and experiments. Med. Biol. Eng. Comput. 2009, 47, 279–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashed, E.A.; Diao, Y.; Tanaka, S.; Sakai, T.; Gomez-Tames, J.; Hirata, A. Effect of Skin-to-Skin Contact on Stimulation Threshold and Dosimetry. IEEE Trans. Electromagn. Compat. 2020, 62, 2704–2713. [Google Scholar] [CrossRef]
- Hirata, A.; Takano, Y.; Kamimura, Y.; Fujiwara, O. Effect of the averaging volume and algorithm on the in situ electric field for uniform electric- and magnetic-field exposures. Phys. Med. Biol. 2010, 55, N243. [Google Scholar] [CrossRef]
- Budinger, T.F.; Fischer, H.; Hentschel, D.; Reinfelder, H.E.; Schmitt, F. Physiological effects of fast oscillating magnetic field gradients. J. Comput. Assist. Tomogr. 1991, 15, 909–914. [Google Scholar] [CrossRef]
- Bourland, J.D.; Nyenhuis, J.A.; Foster, K.S.; Geddes, L.A. Threshold and pain strength- duration curves for MRI gradient fields. In Proceedings of the 5th Society of Magnetic Resonance in Medicine Annual Meeting, Vancouver, BC, Canada, 12–18 April 1997; p. 1974. [Google Scholar]
- Bracken, T.D. Assessing compliance with power-frequency magnetic-field guidelines. Health Phys. 2002, 83, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Major, L.A.; Jones, K.E. Simulations of motor unit number estimation techniques. J. Neural Eng. 2005, 2, 17–34. [Google Scholar] [CrossRef]
- Dimbylow, P.; Findlay, R. The effects of body posture, anatomy, age and pregnancy on the calculation of induced current densities at 50 Hz. Radiat. Prot. Dosim. 2010, 139, 532–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aga, K.; Hirata, A.; Laakso, I.; Tarao, H.; Diao, Y.; Ito, T.; Sekiba, Y.; Yamazaki, K. Intercomparison of in Situ Electric Fields in Human Models Exposed to Spatially Uniform Magnetic Fields. IEEE Access 2018, 6, 70964–70973. [Google Scholar] [CrossRef]
- Wake, K.; Sasaki, K.; Watanabe, S. Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies. Phys. Med. Biol. 2016, 61, 4376–4389. [Google Scholar] [CrossRef]
- Rashed, E.A.; Gomez-Tames, J.; Hirata, A. Deep Learning-Based Development of Personalized Human Head Model with Non-Uniform Conductivity for Brain Stimulation. IEEE Trans. Med. Imaging 2020, 39, 2351–2362. [Google Scholar] [CrossRef] [Green Version]
- Reilly, J.P.; Diamant, A.M. Electrostimulation: Theory, Applications, and Computational Model; Artech House: London, UK, 2011. [Google Scholar]
- Hirata, A.; Diao, Y.; Onishi, T.; Sasaki, K.; Ahn, S.; Colombi, D.; De Santis, V.; Laakso, I.; Giaccone, L.; Wout, J.; et al. Assessment of Human Exposure to Electromagnetic Fields: Review and Future Directions. IEEE Trans. Electromagn. Compat. 2021, 63, 1619–1630. [Google Scholar] [CrossRef]
- Miwa, K.; Suzuki, Y.; Lan, J.; Diao, Y.; Hirata, A. A Novel Method to Predict the Maximum Electric Fields in Different Body Parts Exposed to Uniform Low-Frequency Magnetic Field. IEEE Trans. Electromagn. Compat. 2021, 63, 1640–1648. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Nernst potential for sodium channels (ENa) | 115 mV |
Nernst potential for leakage channels (El) | −0.01 mV |
Capacity of membrane at internode (Cm,i) | 28.8 nF |
Capacity of membrane at node (Cm,n) | 30.2 nF |
Internode membrane resistance (Rm,i) | 218 kΩ |
Nodal membrane resistance (Rm,n) | 3.26 kΩ |
Myelin conductance (Gm) | 26.8 nS |
Sodium channel conductance (GNa) | 1445 mS/cm2 |
Leaked channel conductance (Gl) | 128 mS/cm2 |
Parameter | Value | |
---|---|---|
Perceptual | Uncomfortable | |
Capacity of membrane (C) | 6.0 times | 8.5 times |
Sodium channel conductance (GNa) | 8.0 times | 4.5 times |
Leaked channel conductivity (Gl) | 0.25 times | 0.25 times |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, Y.; Gomez-Tames, J.; Diao, Y.; Hirata, A. Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure. Int. J. Environ. Res. Public Health 2022, 19, 390. https://doi.org/10.3390/ijerph19010390
Suzuki Y, Gomez-Tames J, Diao Y, Hirata A. Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure. International Journal of Environmental Research and Public Health. 2022; 19(1):390. https://doi.org/10.3390/ijerph19010390
Chicago/Turabian StyleSuzuki, Yosuke, Jose Gomez-Tames, Yinliang Diao, and Akimasa Hirata. 2022. "Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure" International Journal of Environmental Research and Public Health 19, no. 1: 390. https://doi.org/10.3390/ijerph19010390
APA StyleSuzuki, Y., Gomez-Tames, J., Diao, Y., & Hirata, A. (2022). Evaluation of Peripheral Electrostimulation Thresholds in Human Model for Uniform Magnetic Field Exposure. International Journal of Environmental Research and Public Health, 19(1), 390. https://doi.org/10.3390/ijerph19010390