New Evidence on Regucalcin, Body Composition, and Walking Ability Adaptations to Multicomponent Exercise Training in Functionally Limited and Frail Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Screening
2.2. Randomization and Allocation
2.3. Multicomponent Training (MCT) Program
2.4. Adherence and Motivation Strategy
2.5. Body Composition Measurements
2.6. Blood Collection
2.7. Western Blotting
2.8. Walking Ability
2.9. Ethical Committee
2.10. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. SMP30, Walking Ability, and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elies, J.; Yanez, M.; Pereira, T.M.C.; Gil-Longo, J.; MacDougall, D.A.; Campos-Toimil, M. An Update to Calcium Binding Proteins. Adv. Exp. Med. Biol. 2020, 1131, 183–213. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Inoue, H.; Kitamura, T.; Sato, N.; Shimosawa, T.; Maruyama, N. Senescence marker protein-30 (SMP30) rescues cell death by enhancing plasma membrane Ca(2+)-pumping activity in Hep G2 cells. Biochem. Biophys. Res. Commun. 1998, 250, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Role of regucalcin in brain calcium signaling: Involvement in aging. Integr. Biol. 2012, 4, 825–837. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Involvement of regucalcin in lipid metabolism and diabetes. Metabolism 2013, 62, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Tsurusaki, Y.; Yamaguchi, M. Overexpression of regucalcin modulates tumor-related gene expression in cloned rat hepatoma H4-II-E cells. J. Cell. Biochem. 2003, 90, 619–626. [Google Scholar] [CrossRef]
- Yamaguchi, M. Suppressive role of regucalcin in liver cell proliferation: Involvement in carcinogenesis. Cell. Prolif. 2013, 46, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Involvement of regucalcin as a suppressor protein in human carcinogenesis: Insight into the gene therapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.H.; Bahnson, B.J. Senescence Marker Protein 30: Functional and Structural Insights to its Unknown Physiological Function. Biomol. Concepts 2011, 2, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.J.; Lee, E.K.; Kim, S.J.; Song, C.W.; Maruyama, N.; Ishigami, A.; Kim, N.D.; Im, D.S.; Yu, B.P.; Chung, H.Y. Anti-inflammatory activity of SMP30 modulates NF-kappaB through protein tyrosine kinase/phosphatase balance. J. Mol. Med. 2015, 93, 343–356. [Google Scholar] [CrossRef]
- Yamaguchi, M. The potential role of regucalcin in kidney cell regulation: Involvement in renal failure (Review). Int. J. Mol. Med. 2015, 36, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, R.; Maia, C.J.; Vaz, C.; Correia, S.; Socorro, S. The diverse roles of calcium-binding protein regucalcin in cell biology: From tissue expression and signalling to disease. Cell. Mol. Life Sci. 2014, 71, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Uchida, K.; Maruyama, N. Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim. Biophys. Acta 1992, 1116, 122–128. [Google Scholar] [CrossRef]
- Perez-Gomez, J.; Adsuar, J.C.; Garcia-Gordillo, M.A.; Munoz, P.; Romo, L.; Maynar, M.; Gusi, N.; PC, R. Twelve Weeks of Whole Body Vibration Training Improve Regucalcin, Body Composition and Physical Fitness in Postmenopausal Women: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 3940. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.R.; Anderson, S. The aging kidney: Physiological changes. Adv. Chronic Kidney Dis. 2010, 17, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R. Structural and physiological age-associated changes in aging lungs. Semin. Respir. Crit. Care Med. 2010, 31, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Pugh, K.G.; Wei, J.Y. Clinical implications of physiological changes in the aging heart. Drugs Aging 2001, 18, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Magri, F.; Locatelli, M.; Balza, G.; Molla, G.; Cuzzoni, G.; Fioravanti, M.; Solerte, S.B.; Ferrari, E. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol. Int. 1997, 14, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Stenholm, S.; Pulakka, A.; Leskinen, T.; Pentti, J.; Heinonen, O.J.; Koster, A.; Vahtera, J. Daily physical activity patterns and their association with health-related physical fitness among aging workers—The Finnish Retirement and Aging study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 76, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.S.; Hsieh, C.C.; Cheng, H.S.; Tseng, T.J.; Su, S.C. Association between Physical Fitness and Successful Aging in Taiwanese Older Adults. PLoS ONE 2016, 11, e0150389. [Google Scholar] [CrossRef] [Green Version]
- Sposato, B.; Scalese, M.; Milanese, M.; Scichilone, N.; Scala, R.; Perrella, A. Smoking and Obesity Increase Airway Hyperesponsiveness Risk in the Elderly. Curr. Aging Sci. 2016, 9, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Iimuro, S.; Araki, A.; Umegaki, H.; Ohashi, Y.; Yokono, K.; Ito, H. Age-associated increase in abdominal obesity and insulin resistance, and usefulness of AHA/NHLBI definition of metabolic syndrome for predicting cardiovascular disease in Japanese elderly with type 2 diabetes mellitus. Gerontology 2010, 56, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Mino, Y.; Tsuda, T.; Babazono, A.; Kawada, Y.; Araki, H.; Ogawa, T.; Aoyama, H. Relation between the instrumental activities of daily living and physical fitness tests in elderly women. Acta Med. Okayama 1996, 50, 325–333. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K.; Heidari, B.; Hajian-Tilaki, A. Solitary and combined negative influences of diabetes, obesity and hypertension on health-related quality of life of elderly individuals: A population-based cross-sectional study. Diabetes Metab. Syndr. 2016, 10, S37–S42. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, G.V.; Pezarat-Correia, P.; Vaz, J.R.; Silva, L.; Almeida, I.D.; Heffernan, K.S. Impact of Exercise Training on Physiological Measures of Physical Fitness in the Elderly. Curr. Aging Sci. 2016, 9, 240–259. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, S.; Klein, A.B.; Kim, S.H. Multicomponent exercise for physical fitness of community-dwelling elderly women. J. Phys. Ther. Sci. 2015, 27, 911–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-García, A.I.; Gómez-Cabello, A.; Moradell, A.; Navarrete-Villanueva, D.; Pérez-Gómez, J.; Ara, I.; Pedrero-Chamizo, R.; Subías-Perié, J.; Muniz-Pardos, B.; Casajús, J.A.; et al. How to Improve the Functional Capacity of Frail and Pre-Frail Elderly People? Health, Nutritional Status and Exercise Intervention. The EXERNET-Elder 3.0 Project. Sustainability 2020, 12, 6246. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Treacy, D.; Hassett, L. The Short Physical Performance Battery. J. Physiother. 2018, 64, 61. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, J.E.; Malmstrom, T.K.; Miller, D.K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 2012, 16, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Simundic, A.M.; Bolenius, K.; Cadamuro, J.; Church, S.; Cornes, M.P.; van Dongen-Lases, E.C.; Eker, P.; Erdeljanovic, T.; Grankvist, K.; Guimaraes, J.T.; et al. Joint EFLM-COLABIOCLI Recommendation for venous blood sampling. Clin. Chem. Lab. Med. 2018, 56, 2015–2038. [Google Scholar] [CrossRef] [Green Version]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications Ltd.: London, UK, 2009. [Google Scholar]
- Li, S.; Chen, X.; Lai, W.; Hu, M.; Zhong, X.; Tan, S.; Liang, H. Downregulation of SMP30 in senescent human lens epithelial cells. Mol. Med. Rep. 2017, 16, 4022–4028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouaziz, W.; Lang, P.O.; Schmitt, E.; Kaltenbach, G.; Geny, B.; Vogel, T. Health benefits of multicomponent training programmes in seniors: A systematic review. Int. J. Clin. Pract. 2016, 70, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Enright, P.L. The six-minute walk test. Respir. Care 2003, 48, 783–785. [Google Scholar]
- Bergland, A.; Thorsen, H.; Karesen, R. Effect of exercise on mobility, balance, and health-related quality of life in osteoporotic women with a history of vertebral fracture: A randomized, controlled trial. Osteoporos. Int. 2011, 22, 1863–1871. [Google Scholar] [CrossRef]
- Cancela, J.M.; Perez, C.A.; Rodrigues, L.P.; Bezerra, P. The Long-Term Benefits of a Multicomponent Physical Activity Program to Body Composition, Muscle Strength, Cardiorespiratory Capacity, and Bone Mineral Density in a Group of Nonagenarians. Rejuvenation Res. 2020, 23, 217–223. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R. Effects of resistance versus multicomponent training on body composition and functional fitness in institutionalized elderly women. J. Am. Geriatr. Soc. 2013, 61, 1815–1817. [Google Scholar] [CrossRef] [PubMed]
- Marin-Cascales, E.; Rubio-Arias, J.A.; Romero-Arenas, S.; Alcaraz, P.E. Effect of 12 Weeks of Whole-Body Vibration Versus Multi-Component Training in Post-Menopausal Women. Rejuvenation Res. 2015, 18, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Marin-Cascales, E.; Alcaraz, P.E.; Rubio-Arias, J.A. Effects of 24 Weeks of Whole Body Vibration Versus Multicomponent Training on Muscle Strength and Body Composition in Postmenopausal Women: A Randomized Controlled Trial. Rejuvenation Res. 2017, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
Variables | Control Group | Intervention Group |
---|---|---|
Age (year) | 80.4 ± 5.9 | 81.0 ± 6.2 |
Weight (kg) | 72.2 ± 15.5 | 77.6 ± 14.7 |
Height (cm) | 153.3 ± 6.5 * | 161.8 ± 8.3 |
BMI (kg/m2) | 30.6 ± 4.9 | 29.7 ± 5.7 |
Control Group | Intervention Group | |||||||
Baseline | 3 Months | 6 Months | p | Baseline | 3 Months | 6 Months | p | |
SMP30 (a.u.) | - | 790.4 ± 320.9 | 763.8 ± 285.2 | 0.730 | - | 877.5 ± 392.4 | 940.5 ± 543.3 | 0.526 |
TUG (s) | 10.7 ± 4.9 | 9.3 ± 3.2 | 10.7 ± 7.0 | 0.846 | 9.3 ± 2.4 #$ | 7.6 ± 1.6 | 7.3 ± 1.8 | 0.005 |
6MWT (m) | 368.0 ± 151.7 | 366.6 ± 146.9 | 361.1 ± 138.1 | 0.957 | 411.2 ± 75.2 # | 472.2 ± 84.2 | 448.4 ± 108.5 | 0.004 |
Body fat (%) | 42.5 ± 3.3 * | 42.5 ± 3.3 * | 42.1 ± 3.3 * | 0.459 | 36.0 ± 5.0 | 36.1 ± 4.9 | 35.5 ± 5.1 | 0.336 |
Lean mass (kg) | 40.4 ± 9.1 * | 40.6 ± 10.0 * | 40.6 ± 9.2 * | 0.236 | 49.2 ± 8.9 | 49.5 ± 8.7 | 49.4 ± 8.9 | 0.689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Gómez, J.; Redondo, P.C.; Navarrete-Villanueva, D.; Lozano-Berges, G.; Ara, I.; González-Gross, M.; Casajus, J.A.; Vicente-Rodríguez, G. New Evidence on Regucalcin, Body Composition, and Walking Ability Adaptations to Multicomponent Exercise Training in Functionally Limited and Frail Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 363. https://doi.org/10.3390/ijerph19010363
Pérez-Gómez J, Redondo PC, Navarrete-Villanueva D, Lozano-Berges G, Ara I, González-Gross M, Casajus JA, Vicente-Rodríguez G. New Evidence on Regucalcin, Body Composition, and Walking Ability Adaptations to Multicomponent Exercise Training in Functionally Limited and Frail Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(1):363. https://doi.org/10.3390/ijerph19010363
Chicago/Turabian StylePérez-Gómez, Jorge, Pedro C. Redondo, David Navarrete-Villanueva, Gabriel Lozano-Berges, Ignacio Ara, Marcela González-Gross, José A. Casajus, and Germán Vicente-Rodríguez. 2022. "New Evidence on Regucalcin, Body Composition, and Walking Ability Adaptations to Multicomponent Exercise Training in Functionally Limited and Frail Older Adults" International Journal of Environmental Research and Public Health 19, no. 1: 363. https://doi.org/10.3390/ijerph19010363