Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
2.2.1. Autoregressive Integrated Moving Average (ARIMA) Model
2.2.2. Distributed Lag Non-Linear Model
2.2.3. Sensitivity Analysis
3. Results
3.1. Epidemiological Characteristics of Epidemics between 2012 and 2019 in Singapore
3.2. Linear Relationship with Weather Factors in Cross-Correlation and ARIMA Modelling
3.3. Non-Linear Relationship with Weather Factors in Cross-Correlation and DLNM
3.3.1. Effect of PSI
3.3.2. Effect of Rainfall
3.3.3. Effect of Temperature
3.3.4. Effect of Wind Speed
3.3.5. Sensitivity Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.H.; Nam, K.W.; Jeong, J.Y.; Yoo, S.J.; Koh, Y.-S.; Lee, S.; Heo, S.T.; Seong, S.-Y.; Lee, K.H. The effects of climate change and globalization on mosquito vectors: Evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. PLoS ONE 2013, 8, e68512. [Google Scholar]
- Simo, F.B.N.; Bigna, J.J.; Kenmoe, S.; Ndangang, M.S.; Temfack, E.; Moundipa, P.F.; Demanou, M. Dengue virus infection in people residing in Africa: A systematic review and meta-analysis of prevalence studies. Sci. Rep. 2019, 9, 13626. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Murray, N.E.A.; Quam, M.B. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013, 5, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Changal, K.H.; Raina, A.H.; Raina, A.; Raina, M.; Bashir, R.; Latief, M.; Mir, T.; Changal, Q.H. Differentiating secondary from primary dengue using IgG to IgM ratio in early dengue: An observational hospital based clinico-serological study from North India. BMC Infect. Dis. 2016, 16, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junxiong, P.; Yee-Sin, L. Clustering, climate and dengue transmission. Expert Rev. Anti-Infect. Ther. 2015, 13, 731–740. [Google Scholar] [CrossRef]
- Hii, Y.L.; Zaki, R.A.; Aghamohammadi, N.; Rocklöv, J. Research on Climate and Dengue in Malaysia: A Systematic Review. Curr. Environ. Health Rep. 2016, 3, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajarethinam, J.; Ang, L.W.; Ong, J.; Ycasas, J.; Hapuarachchi, H.C.; Yap, G.; Chong, C.-S.; Lai, Y.-L.; Cutter, J.; Ho, D.; et al. Dengue in Singapore from 2004 to 2016: Cyclical Epidemic Patterns Dominated by Serotypes 1 and 2. Am. J. Trop. Med. Hyg. 2018, 99, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Koh, B.K.W.; Ng, L.C.; Kita, Y.; Tang, C.S.; Ang, L.W.; Wong, K.Y.; James, L.; Goh, K.T. The 2005 dengue epidemic in Singapore: Epidemiology, prevention and control. Ann. Acad. Med. Singap. 2008, 37, 538–545. [Google Scholar] [PubMed]
- Ooi, E.-E.; Goh, K.-T.; Gubler, D.J. Dengue prevention and 35 years of vector control in Singapore. Emerg. Infect. Dis. 2006, 12, 887–893. [Google Scholar] [CrossRef]
- Fan, J.-C.; Liu, Q.-Y. Potential impacts of climate change on dengue fever distribution using RCP scenarios in China. Adv. Clim. Chang. Res. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Hii, Y.L.; Rocklöv, J.; Ng, N.; Tang, C.S.; Pang, F.Y.; Sauerborn, R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob. Health Action 2009, 2, 2036. [Google Scholar] [CrossRef] [Green Version]
- Seidahmed, O.M.E.; Lu, D.; Chong, C.-S.; Deng, L.; Eltahir, E.A.B. Patterns of Urban Housing Shape Dengue Distribution in Singapore at Neighborhood and Country Scales. GeoHealth 2018, 2, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Christophers, S. Aëdes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure; The Syndics of the Cambridge University Press: London, UK, 1960. (In English) [Google Scholar]
- Ngugi, H.N.; Mutuku, F.M.; Ndenga, B.A.; Musunzaji, P.S.; Mbakaya, J.O.; Aswani, P.; Irungu, L.W.; Mukoko, D.; Vulule, J.; Kitron, U.; et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasites Vectors 2017, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wongkoon, S.; Jaroensutasinee, M.; Jaroensutasinee, K.; Preechaporn, W. Development sites of Aedes aegypti and Ae. albopictus in Nakhon Si Thammarat, Thailand. WHO Dengue Bull. 2007, 31, 141–152. [Google Scholar]
- Morin, C.W.; Comrie, A.C.; Ernst, K. Climate and dengue transmission: Evidence and implications. Environ. Health Perspect. 2013, 121, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-H. The climatic factors affecting dengue fever outbreaks in southern Taiwan: An application of symbolic data analysis. Biomed. Eng. Online 2018, 17, 148. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; Nealon, J. Dengue in a changing climate. Environ. Res. 2016, 151, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-Y.; Fu, X.; Lee, L.K.H.; Ma, S.; Goh, K.T.; Wong, J.; Habibullah, M.S.; Lee, G.K.K.; Lim, T.K.; Tambyah, P.A.; et al. Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. PLoS Negl. Trop. Dis. 2014, 8, e2805. [Google Scholar] [CrossRef] [Green Version]
- Thu, H.M.; Aye, K.M.; Thein, S. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. Southeast Asian J. Trop. Med. Public Health 1998, 29, 280–284. [Google Scholar]
- Aziz, A.T.; Dieng, H.; Ahmad, A.H.; A Mahyoub, J.; Turkistani, A.M.; Mesed, H.; Koshike, S.; Satho, T.; Salmah, C.; Ahmad, H.; et al. Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pac. J. Trop. Biomed. 2012, 2, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.-P.; Suzuki, M.; Thiem, V.D.; White, R.G.; Tsuzuki, A.; Yoshida, L.-M.; Yanai, H.; Haque, U.; Tho, L.H.; Anh, D.D.; et al. Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis. PLoS Med. 2011, 8, e1001082. [Google Scholar] [CrossRef]
- Naish, S.; Dale, P.; Mackenzie, J.S.; McBride, J.; Mengersen, K.; Tong, S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 2014, 14, 167. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Earnest, A.; Tan, S.B.; Ooi, E.E.; Gubler, D.J. Lack of association of dengue activity with haze. Epidemiol. Infect. 2010, 138, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Hapuarachchi, H.C.; Koo, C.; Rajarethinam, J.; Chong, C.-S.; Lin, C.; Yap, G.; Liu, L.; Lai, Y.-L.; Ooi, P.L.; Cutter, J.; et al. Epidemic resurgence of dengue fever in Singapore in 2013–2014: A virological and entomological perspective. BMC Infect. Dis. 2016, 16, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, N.J. Dengue Cases at Four-Year High Today Online. 2020. Available online: https://www.todayonline.com/singapore/dengue-cases-four-year-high (accessed on 7 October 2020).
- Chew, M.F. Forum: Dengue Control Measures Have Significantly Reduced Transmissions The Straits Times. 2020. Available online: https://www.straitstimes.com/forum/dengue-control-measures-have-significantly-reduced-transmissions (accessed on 7 October 2020).
- Ministry of Health. Weekly Infectious Diseases Bulletin: Ministry of Health. Available online: https://www.moh.gov.sg/resources-statistics/infectious-disease-statistics/2020/weekly-infectious-diseases-bulletin (accessed on 7 October 2020).
- Agency, N.E. Historical Daily Records: National Environment Agency. 2020. Available online: http://www.weather.gov.sg/climate-historical-daily (accessed on 7 October 2020).
- Singapore Department of Statistics. Population and Population Structure: Department of Statistics, Singapore. 2020. Available online: https://www.singstat.gov.sg/find-data/search-by-theme/population/population-and-population-structure/latest-data (accessed on 7 October 2020).
- Bayazit, M.; Önöz, B. To prewhiten or not to prewhiten in trend analysis? Hydrol. Sci. J. 2007, 52, 611–624. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [Green Version]
- Gasparrini, A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat. Med. 2014, 33, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Berk, R.; MacDonald, J. Overdispersion and Poisson Regression. J. Quant. Criminol. 2008, 24, 269–284. [Google Scholar] [CrossRef]
- Lopes, T.F.; Holcman, M.M.; Barbosa, G.; Domingos, M.D.F.; Barreiros, R.M.O.V. Laboratory evaluation of the development of Aedes aegypti in two seasons: Influence of different places and different densities. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goindin, D.; Delannay, C.; Ramdini, C.; Gustave, J.; Fouque, F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE 2015, 10, e0135489. [Google Scholar] [CrossRef] [Green Version]
- Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health, M. Communicable Diseases Surveillance in Singapore. Available online: https://www.moh.gov.sg/resources-statistics (accessed on 7 October 2020).
- Times, T.S. Dengue Cases up Again after Five Weeks of Decline: The Straits Times. 2020. Available online: https://www.straitstimes.com/singapore/dengue-cases-up-again-after-five-weeks-of-decline (accessed on 7 October 2020).
- Asia, C.N. Dengue Cases Expected to Exceed 16,000 Cases unless Immediate Action Taken: NEA: Channel News Asia. 2020. Available online: https://www.channelnewsasia.com/news/singapore/dengue-cases-expected-exceed-16000-nea-12659668 (accessed on 7 October 2020).
- Hussain-Alkhateeb, L.; Kroeger, A.; Olliaro, P.; Rocklöv, J.; Sewe, M.O.; Tejeda, G.; Benitez, D.; Gill, B.; Hakim, S.L.; Carvalho, R.G.; et al. Early warning and response system (EWARS) for dengue outbreaks: Recent advancements towards widespread applications in critical settings. PLoS ONE 2018, 13, e0196811. [Google Scholar]
- Fan, J.; Wei, W.; Bai, Z.; Fan, C.; Li, S.; Liu, Q.; Yang, K. A systematic review and meta-analysis of dengue risk with temperature change. Int. J. Environ. Res. Public Health 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Struchiner, C.; Rocklöv, J.; Wilder-Smith, A.; Massad, E. Increasing dengue incidence in Singapore over the past 40 years: Population growth, climate and mobility. PLoS ONE 2015, 10, e0136286. [Google Scholar] [CrossRef] [Green Version]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1990, 27, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Marinho, R.A.; Beserra, E.B.; Bezerra-Gusmão, M.A.; Porto, V.D.S.; Olinda, R.A.; dos Santos, C.A.C. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. J. Vector Ecol. 2016, 41, 1–10. [Google Scholar] [CrossRef]
- Lu, L.; Lin, H.; Tian, L.; Yang, W.; Sun, J.; Liu, Q. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 2009, 9, 395. [Google Scholar] [CrossRef]
- Cheong, Y.L.; Burkart, K.; Leitão, P.J.; Lakes, T. Assessing weather effects on dengue disease in Malaysia. Int. J. Environ. Res. Public Health 2013, 10, 6319–6334. [Google Scholar] [CrossRef]
- Hoffmann, E.J.; Miller, J.R. Reduction of Mosquito (Diptera: Culicidae) Attacks on a Human Subject by Combination of Wind and Vapor-Phase DEET Repellent. J. Med. Entomol. 2002, 39, 935–938. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Johansson, M.A. The Incubation Periods of Dengue Viruses. PLoS ONE 2012, 7, e50972. [Google Scholar]
- Ehelepola, N.D.B.; Ariyaratne, K.; Buddhadasa, W.M.N.P.; Ratnayake, S.; Wickramasinghe, M. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003–2012) and lessons learned. Infect. Dis. Poverty 2015, 4, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.; Suzilah, I.; Najdah, W.M.A.W.; Topek, O.; Mustafakamal, I.; Lee, H.L. Factors determining dengue outbreak in Malaysia. PLoS ONE 2018, 13, e0193326. [Google Scholar]
- Carneiro, M.A.F.; Alves, B.D.C.A.; Gehrke, F.D.S.; Domingues, J.N.; Sá, N.; Paixão, S.; Figueiredo, J.; Ferreira, A.; Almeida, C.; Machi, A.; et al. Environmental factors can influence dengue reported cases. Rev. Assoc. Med. Bras. 2017, 63, 957–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernède, R.; Van Meer, M.M.; Alpers, M.P. Smoke as a form of personal protection against mosquitos, a field study in Papua New Guinea. Southeast Asian J. Trop. Med. Public Health 1994, 25, 771–775. [Google Scholar] [PubMed]
- Biran, A.; Smith, L.; Lines, J.; Ensink, J.; Cameron, M. Smoke and malaria: Are interventions to reduce exposure to indoor air pollution likely to increase exposure to mosquitoes? Trans. R Soc. Trop. Med. Hyg. 2007, 101, 1065–1071. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Dion, E.; Monteiro, A. Haze smoke impacts survival and development of butterflies. Sci. Rep. 2018, 8, 15667. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Coelho, M.; Olívêr, L.; Massad, E. The influence of climate variables on dengue in Singapore. Int. J. Environ. Health Res. 2011, 21, 415–426. [Google Scholar] [CrossRef]
- Seidahmed, O.M.E.; Eltahir, E.A.B. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore. PLoS Negl. Trop. Dis. 2016, 10, e0004842. [Google Scholar] [CrossRef] [Green Version]
- Benedum, C.M.; Seidahmed, O.M.E.; Eltahir, E.A.B.; Markuzon, N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl. Trop. Dis. 2018, 12, e0006935. [Google Scholar] [CrossRef]
Variable | Mean | Std | Min | P25 | Median | P75 | Max | Hist |
---|---|---|---|---|---|---|---|---|
DengueFeverWeekly | 217.02 | 179.72 | 24.00 | 73.75 | 170.50 | 303.75 | 891.00 | ▇▃▂▁▁ |
Rainfalltotal | 6.37 | 4.67 | 0.00 | 2.72 | 5.54 | 8.93 | 25.36 | ▇▆▂▁▁ |
Meantemperature | 27.97 | 0.86 | 25.04 | 27.38 | 28.01 | 28.51 | 30.02 | ▁▃▇▇▂ |
Maxtemperature | 31.79 | 0.97 | 27.89 | 31.25 | 31.84 | 32.42 | 34.19 | ▁▁▆▇▂ |
Mintemperature | 25.25 | 0.82 | 23.17 | 24.63 | 25.14 | 25.79 | 27.70 | ▁▇▇▃▁ |
PSI | 46.78 | 17.15 | 16.45 | 35.29 | 48.22 | 54.74 | 165.85 | ▆▇▁▁▁ |
Windspeed | 7.88 | 1.74 | 4.99 | 6.61 | 7.52 | 8.75 | 14.89 | ▇▇▃▁▁ |
Meteorological Factor | Lag of Week | Cross Correlation Coefficient | Akaïke Information Criterion (AIC) | ||
---|---|---|---|---|---|
PSI | 5 | −0.111 | −0.2128 (<0.001) *** | −0.0020 (0.043) * | −133.68 |
7 | −0.115 | −0.2053 (<0.001) *** | −0.0020 (0.0375) * | −133.91 | |
Mean temperature (°C) | 1 | 0.115 | −0.2121 (<0.001) *** | 0.0296 (0.0452) * | −131.67 |
2 | 0.100 | −0.2175 (<0.001) *** | 0.0257 (0.0854) | −130.61 | |
11 | 0.118 | −0.1970 (<0.001) *** | 0.0318 (0.0299) * | −132.37 | |
Maximum temperature (°C) | 11 | 0.155 | −0.1995 (<0.001) *** | 0.0358 (0.0013) * | −143.4 |
13 | 0.110 | −0.2045 (<0.001) *** | 0.0031 (0.7838) | −133.1 | |
14 | 0.123 | −0.2115 (<0.001) *** | 0.0164 (0.1421) | −135.19 | |
Minimum temperature (°C) | 1 | 0.126 | −0.2024 (<0.001) *** | 0.0192 (0.1811) | −126.77 |
2 | 0.114 | −0.2064 (<0.001) *** | 0.0167 (0.2471) | −126.32 | |
3 | 0.103 | −0.2085 (<0.001) *** | 0.0212 (0.1413) | −127.15 | |
Wind speed (km/h) | 5 | −0.124 | −0.2108 (<0.001) *** | −0.0330 (<0.001) *** | −146.44 |
Total rainfall (mm) | NS | NS | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, H.; Gwee, S.; Koh, J.; Pang, J. Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City. Int. J. Environ. Res. Public Health 2022, 19, 339. https://doi.org/10.3390/ijerph19010339
Gui H, Gwee S, Koh J, Pang J. Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City. International Journal of Environmental Research and Public Health. 2022; 19(1):339. https://doi.org/10.3390/ijerph19010339
Chicago/Turabian StyleGui, Hao, Sylvia Gwee, Jiayun Koh, and Junxiong Pang. 2022. "Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City" International Journal of Environmental Research and Public Health 19, no. 1: 339. https://doi.org/10.3390/ijerph19010339
APA StyleGui, H., Gwee, S., Koh, J., & Pang, J. (2022). Weather Factors Associated with Reduced Risk of Dengue Transmission in an Urbanized Tropical City. International Journal of Environmental Research and Public Health, 19(1), 339. https://doi.org/10.3390/ijerph19010339