Citation Network Study on the Use of New Technologies in Neurorehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Data Analysis
2.2.1. Bibliometric Analysis
2.2.2. Network Analysis
2.2.3. Scientometric Analysis
3. Results
3.1. Description of the Publications
3.2. Characteristics of the Publications
Keywords
3.3. Most Cited Publications
3.4. Clustering
3.5. Core Publications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pringsheim, T.; Fiest, K.; Jette, N. The international incidence and prevalence of neurologic conditions: How common are they? Neurology 2014, 83, 1661–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.; Janssens, A.; Tomlinson, R.; Williams, J.; Logan, S. Towards a definition of neurodisability: A Delphi survey. Dev. Med. Child. Neurol. 2013, 55, 1103–1108. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Galea, M.P.; Gonzenbach, R.; Kesselring, J. Neurorehabilitation: Applied neuroplasticity. J. Neurol. 2017, 264, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Bronzino, J.D. (Ed.) Medical technology: Assessment and acquisition. In Management of Medical Technology. A Primer for Clinical Engineers; Butterworth-Heinemann: Oxford, UK, 1992; Chapter 4; pp. 111–152. [Google Scholar]
- De la Cuerda, R.C.; Torricelli, D. Implementación y retos de las nuevas tecnologías en neurorrehabilitación. In Nuevas Tecnologías en Neurorrehabilitación: Aplicaciones Diagnósticas y Terapéuticas; Editorial Médica Panamericana: Madrid, Spain, 2018; pp. 207–214. [Google Scholar]
- Schenk, P.; Colombo, G.; Maier, I. New Technology in Rehabilitation: Possibilities and Limitations BT. In Converging Clinical and Engineering Research on Neurorehabilitation; Pons, J.L., Torricelli, D., Pajaro, M., Eds.; Springer: Heidelberg/Berlin, Germany, 2013; pp. 963–967. [Google Scholar]
- Adomavičienė, A.; Daunoravičienė, K.; Kubilius, R.; Varžaitytė, L.; Raistenskis, J. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicina 2019, 55, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockx, K.; Bekkers, E.M.; Van den Bergh, V.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 2016, 12, CD010760. [Google Scholar] [CrossRef]
- Kandalaft, M.R.; Didehbani, N.; Krawczyk, D.C.; Allen, T.T.; Chapman, S.B. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 2013, 43, 34–44. [Google Scholar] [CrossRef] [Green Version]
- González, C.M. Análisis de citación y de redes sociales para el estudio del uso de revistas en centros de investigación: An approach to the development of collections. Ciência da Informação 2009, 38, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Skolarus, T.A.; Lehmann, T.; Tabak, R.G.; Harris, J.; Lecy, J.; Sales, A.E. Assessing citation networks for dissemination and implementation research frameworks. Implement Sci. 2017, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Bar-Ilan, J.; Levene, M.; Lin, A. Some measures for comparing citation databases. J. Informetr. 2007, 1, 26–34. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Price, D.J.D.S. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1986. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.C.; Rosen, J.; Burns, S. Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 2007, 12, 408–417. [Google Scholar] [CrossRef]
- Riener, R.; Lünenburger, L.; Jezernik, S.; Anderschitz, M.; Colombo, G.; Dietz, V. Patient-cooperative strategies for robot-aided treadmill training: First experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.I.; Volpe, B.T.; Aisen, M.L.; Hogan, N. Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 2000, 37, 639–652. [Google Scholar]
- Loureiro, R.; Amirabdollahian, F.; Topping, M.; Driessen, B.; Harwin, W. Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robot. 2003, 15, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Rizzo Albert, A. Virtual Environments Laboratory, Integrated Media Systems Center; University of Southern California: Los Angeles, CA, USA, 2004; pp. 207–239. [Google Scholar]
- Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef]
- Lécuyer, A.; Lotte, F.; Reilly, R.B.; Leeb, R.; Hirose, M.; Slater, M. Brain-computer interfaces, virtual reality, and videogames. Computer 2008, 41, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Brewer, B.R.; McDowell, S.K.; Worthen-Chaudhari, L.C. Poststroke upper extremity rehabilitation: A review of robotic systems and clinical results. Top Stroke Rehabil. 2007, 14, 22–44. [Google Scholar] [CrossRef]
- Soekadar, S.R.; Birbaumer, N.; Slutzky, M.W.; Cohen, L.G. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 2015, 83, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Silvoni, S.; Ramos-Murguialday, A.; Cavinato, M.; Volpato, C.; Cisotto, G.; Turolla, A.; Piccione, F.; Birbaumer, N. Brain-computer interface in stroke: A review of progress. Clin. EEG Neurosci. 2011, 42, 245–252. [Google Scholar] [CrossRef]
- Loureiro, R.C.V.; Harwin, W.S.; Nagai, K.; Johnson, M. Advances in upper limb stroke rehabilitation: A technology push. Med. Biol. Eng. Comput. 2011, 49, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Lünenburger, L.; Colombo, G.; Riener, R. Biofeedback for robotic gait rehabilitation. J. Neuroeng. Rehabil. 2007, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, A.; Loewenstein, D.A. Nonpharmacological cognitive interventions in aging and dementia. J. Geriatr. Psychiatry Neurol. 2007, 20, 239–249. [Google Scholar] [CrossRef]
- MacPhee, A.H.; Kirby, R.L.; Coolen, A.L.; Smith, C.; MacLeod, D.A.; Dupuis, D.J. Wheelchair Skills Training Program: A Randomized Clinical Trial of Wheelchair Users Undergoing Initial Rehabilitation. Arch. Phys. Med. Rehabil. 2004, 85, 41–50. [Google Scholar] [CrossRef]
- Jackson, A.; Zimmermann, J. Neural interfaces for the brain and spinal cord—Restoring motor function. Nat. Rev. Neurol. 2012, 8, 690–699. [Google Scholar] [CrossRef]
- Sale, P.; Franceschini, M.; Waldner, A.; Hesse, S. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury. Eur. J. Phys. Rehabil. Med. 2012, 48, 111–121. [Google Scholar]
- Manhal-Baugus, M. E-therapy: Practical, ethical, and legal issues. CyberPsychology Behav. 2001, 4, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Carbonaro, M.; King, S.; Taylor, E.; Satzinger, F.; Snart, F.; Drummond, J. Integration of e-learning technologies in an interprofessional health science course. Med. Teach. 2008, 30, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sanford, J.A.; Griffiths, P.C.; Richardson, P.; Hargraves, K.; Butterfield, T.; Hoenig, H. The effects of in-home rehabilitation on task self-efficacy in mobility-impaired adults: A randomized clinical trial. J. Am. Geriatr. Soc. 2006, 54, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Padovani, L.; André, N.; Constine, L.S.; Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 2012, 8, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, A.A.A.; Seelen, H.A.M.; Geers, R.P.J.; Saini, P.K.; Winter, S.; Vrugt, J.T.; Kingma, H. Sensor-based arm skill training in chronic stroke patients: Results on treatment outcome, patient motivation, and system usability. IEEE Trans. Neural. Syst. Rehabil. Eng. 2010, 18, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.K.; Beatty, K.E.; Lecy, J.D.; Cyr, J.M.; Shapiro, R.M., II. Mapping the multidisciplinary field of public health services and systems research. Am. J. Prev. Med. 2011, 41, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K. An Absolute index (Ab-index) to measure a researcher’s useful contributions and productivity. PLoS ONE 2013, 8, e84334. [Google Scholar]
- Aparicio-Martinez, P.; Perea-Moreno, A.J.; Martinez-Jimenez, M.P.; Redel-Macías, M.D.; Vaquero-Abellan, M.; Pagliari, C. A bibliometric analysis of the health field regarding social networks and young people. Int. J. Environ. Res. Public Health 2019, 16, 4024. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Wu, Y.T.; Tsai, C.C. Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. Int. J. Sci. Educ. 2009, 31, 1999–2020. [Google Scholar] [CrossRef]
- Fazekas, G.; Tavaszi, I. The future role of robots in neuro-rehabilitation. Expert Rev. Neurother. 2019, 19, 471–473. [Google Scholar] [CrossRef]
- Poli, P.; Morone, G.; Rosati, G.; Masiero, S. Robotic technologies and rehabilitation: New tools for stroke patients’ therapy. BioMed Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Prensky, M. Digital Natives, Digital Immigrants Part 1. Horizon 2001, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Perry, J.; Andureu, J. Effective game use in neurorehabilitation: User-centered perspectives. In Handbook of Research on Improving Learning and Motivation through Educational games: Multidisciplinary Approaches; IGI Global: Hershey, PA, USA, 2011; pp. 683–725. [Google Scholar]
- Winstein, C.; Lewthwaite, R.; Blanton, S.R.; Wolf, L.B.; Wishart, L. Infusing motor learning research into neurorehabilitation practice: A historical perspective with case exemplar from the accelerated skill acquisition program. J. Neurol. Phys. Ther. 2014, 38, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavon, J.M.; Sloane, R.J.; Pieper, C.F.; Colón-Emeric, C.S.; Cohen, H.J.; Gallagher, D.; Hall, K.S.; Morey, M.C.; McCarty, M.; Hastings, S.N. Accelerometer-Measured Hospital Physical Activity and Hospital-Acquired Disability in Older Adults. J. Am. Geriatr. Soc. 2020, 68, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Matamala-Gomez, M.; Maisto, M.; Montana, J.I.; Mavrodiev, P.A.; Baglio, F.; Rossetto, F.; Mantovani, F.; Riva, G.; Realdon, O. The role of engagement in teleneurorehabilitation: A systematic review. Front. Neurol. 2020, 11, 354. [Google Scholar] [CrossRef]
- Martinez-Perez, C.; Alvarez-Peregrina, C.; Villa-Collar, C.; Sánchez-Tena, M.Á. Citation Network Analysis of the Novel Coronavirus Disease 2019 (COVID-19). Int. J. Environ. Res. Public Health 2020, 17, 7690. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Martín, M.E.; Lucena-Antón, D.; Luque-Moreno, C.; Heredia-Rizo, A.M.; Moral-Munoz, J.A. Commercial mobile applications in the therapeutic approach to stroke: Review in main application repositories and scientific evidence. Rev. Esp. Salud Publica 2019, 93, 93. [Google Scholar]
- Sánchez-Rodríguez, M.T.; Collado-Vázquez, S.; Martín-Casas, P.; Cano-de la Cuerda, R. Neurorehabilitation and apps: A systematic review of mobile applications. Neurología 2018, 33, 313–326. [Google Scholar] [CrossRef] [PubMed]
Country | Publications (%) | Centrality | Degree | HalfLife |
---|---|---|---|---|
United States | 144 (31.7%) | 0.19 | 18 | 22.5 |
Italy | 59 (13.00%) | 0.12 | 15 | 12.5 |
Spain | 50 (11.0%) | 0.11 | 12 | 8.5 |
Canada | 37 (8.1%) | 0.10 | 11 | 10.5 |
England | 36 (7.9%) | 0.34 | 20 | 16.5 |
Keyword | Frequency | Centrality | Degree | Total Link Strength |
---|---|---|---|---|
Rehabilitation | 41 | 0.32 | 54 | 878 |
Neurorehabilitation | 38 | 0.53 | 63 | 594 |
Stroke | 29 | 0.24 | 41 | 718 |
Virtual reality | 19 | 0.21 | 37 | 242 |
Brain–computer interface | 11 | 0.08 | 21 | 137 |
Spinal cord injury | 10 | 0.07 | 17 | 143 |
Exoskeleton | 9 | 0.07 | 17 | 95 |
Assistive technology | 7 | 0.05 | 15 | 88 |
Gait | 7 | 0.03 | 15 | 158 |
Robotics | 6 | 0.07 | 11 | 149 |
Motor learning | 6 | 0.06 | 20 | 133 |
Neuroplasticity | 6 | 0.05 | 16 | 116 |
Electroencephalogram | 5 | 0.03 | 10 | 65 |
Cerebral palsy | 5 | 0.03 | 10 | 72 |
Cognitive rehabilitation | 4 | 0.06 | 12 | 76 |
Telerehabilitation | 4 | 0.02 | 9 | 107 |
Balance | 3 | 0.03 | 10 | 163 |
Motor imagery | 3 | 0.01 | 8 | 91 |
Noninvasive brain stimulation | 3 | 0.04 | 6 | 88 |
Technology | 3 | 0.04 | 7 | 201 |
Brain injury | 3 | 0.05 | 12 | 44 |
Brain stimulation | 3 | 0.01 | 11 | 45 |
Interactive video | 3 | 0.01 | 7 | 18 |
Gait rehabilitation | 3 | 0.03 | 7 | 43 |
Eye-tracking | 3 | 0.01 | 7 | 18 |
Neurological disease | 3 | 0.04 | 9 | 30 |
Serious game | 2 | 0.00 | 4 | 9 |
Cueing | 2 | 0.03 | 6 | 18 |
Electrical stimulation | 2 | 0.02 | 6 | 35 |
Brain plasticity | 2 | 0.04 | 6 | 68 |
Cluster | Color | Main Keywords | Topic | % |
---|---|---|---|---|
1 | Red | Motor learning, transcranial magnetic stimulation, noninvasive brain stimulation, cortical reorganization, motor rehabilitation | Motor rehabilitation and motor learning | 6.00 |
2 | Green | Neurorehabilitation, performance, environments, randomized controlled trial, upper limb | Upper limb neurorehabilitation | 5.60 |
3 | Dark blue | Feasibility, efficacy, cognitive impairment, multiple sclerosis, dysfunction | Neurodegenerative pathology neurorehabilitation | 5.60 |
4 | Yellow | Walking, robotics, robot, locomotion, body weight support | Robotic technologies in subjects with walking disabilities | 5.10 |
5 | Purple | Communication, motor imagery, brain–computer interface, functional electrical stimulation, brain–computer interface | Brain–computer interface and applications to neurorehabilitation | 5.00 |
Author | Title | Journal | Year | Citation Index | Links |
---|---|---|---|---|---|
Perry et al. [17] | Upper-limb powered exoskeleton design | IEEE/ASME Transactions on Mechatronics. 2007 Aug;12(4):408–417 | 2007 | 467 | 4 |
Riener et al. [18] | Patient-cooperative strategies for robot-aided treadmill training: first experimental results | IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):380–94 | 2005 | 402 | 4 |
Krebs et al. [19] | Increasing productivity and quality of care: robot-aided neuro-rehabilitation | l Res Dev. Nov-Dec 2000;37(6):639–52 | 2000 | 266 | 7 |
Loureiro et al. [20] | Upper limb robot mediated stroke therapy: GENTLE/s approach | Autonomous Robots. 2003 Jul;15:35–51 | 2003 | 212 | 4 |
Rizzo et al. [21] | Analysis of assets for virtual reality applications in neuropsychology | Neuropsychol Rehabil. 2004 Jan;14:207–239 | 2004 | 199 | 4 |
Wilson et al. [22] | Advances in electronic-nose technologies developed for biomedical applications | Sensors (Basel). 2011;11(1):1105–76 | 2011 | 191 | 0 |
Lécuyer et al. [23] | Brain–computer Interfaces, virtual reality, and videogames | IEEE/ASME Transactions on Mechatronics. 2008 Oct;41(10):66–72 | 2008 | 170 | 2 |
Brewer et al. [24] | Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results | Top Stroke Rehabil. 2007 Dec;14(6):22–44 | 2007 | 147 | 7 |
Soekadar et al. [25] | Brain–machine interfaces in neurorehabilitation of stroke | Neurobiol Dis. 2015 Nov;83:172–9 | 2015 | 112 | 6 |
Silvoni et al. [26] | Brain–computer interface in stroke: a review of progress | Clin EEG Neurosci. 2011 Oct;42(4):245–52 | 2011 | 108 | 2 |
Loureiro et al. [27] | Advances in upper limb stroke rehabilitation: a technology push | Med Biol Eng Comput. 2011 Oct;49(10):1103–18 | 2011 | 107 | 5 |
Lüenenburger et al. [28] | Biofeedback for robotic gait rehabilitation | J Neuroeng Rehabil. 2007 Jan 23;4:1 | 2007 | 105 | 5 |
Acevedo et al. [29] | Nonpharmacological cognitive interventions in aging and dementia | J Geriatr Psychiatry Neurol. 2007 Dec;20(4):239–49 | 2007 | 106 | 0 |
MacPhee et al. [30] | Wheelchair skills training program: a randomized clinical trial of wheelchair users undergoing initial rehabilitation | Arch Phys Med Rehabil. 2004 Jan;85(1):41–50 | 2004 | 101 | 0 |
Jackson et al. [31] | Neural interfaces for the brain and spinal cord: restoring motor function | Nat Rev Neurol. 2012 Dec;8(12):690–9. | 2012 | 93 | 0 |
Sale et al. [32] | Use of the robot-assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury | Eur J Phys Rehabil Med. 2012 Mar;48(1):111–21 | 2012 | 91 | 4 |
Manhal-Baugus [33] | E-therapy: practical, ethical, and legal issues | Cyberpsychol Behav. 2001 Oct;4(5):551–63. | 2001 | 85 | 1 |
Carbonaro et al. [34] | Integration of e-learning technologies in an interprofessional health science course | Med Teach. 2008 Feb;30(1):25–33. | 2008 | 84 | 1 |
Sanford et al. [35] | The effects of in-home rehabilitation on task self-efficacy in mobility-impaired adults: a randomized clinical trial | J Am Geriatr Soc. 2006 Nov;54(11):1641–8. | 2006 | 74 | 3 |
Padovani et al. [36] | Neurocognitive function after radiotherapy for paediatric brain tumours | Nat Rev Neurol. 2012 Oct;8(10):578–88 | 2012 | 73 | 0 |
Main Cluster | Number of Publications | Number of Citation Links | Number of Citations Median (Range) | Number of Publications with ≥4 Citations | Number of Publications in 50 Most Cited Publication |
---|---|---|---|---|---|
Group 1 | 42 | 47 | 16 (0–266) | 29 | 12 |
Group 2 | 34 | 41 | 8 (0–467) | 24 | 7 |
Group 3 | 8 | 10 | 17 (0–93) | 6 | 1 |
Group 4 | 8 | 8 | 2 (0–199) | 3 | 1 |
Group 5 | 8 | 7 | 9 (0–72) | 6 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuín-Porras, V.; Martinez-Perez, C.; Romero-Morales, C.; Cano-de-la-Cuerda, R.; Martín-Casas, P.; Palomo-López, P.; Sánchez-Tena, M.Á. Citation Network Study on the Use of New Technologies in Neurorehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 26. https://doi.org/10.3390/ijerph19010026
Abuín-Porras V, Martinez-Perez C, Romero-Morales C, Cano-de-la-Cuerda R, Martín-Casas P, Palomo-López P, Sánchez-Tena MÁ. Citation Network Study on the Use of New Technologies in Neurorehabilitation. International Journal of Environmental Research and Public Health. 2022; 19(1):26. https://doi.org/10.3390/ijerph19010026
Chicago/Turabian StyleAbuín-Porras, Vanesa, Clara Martinez-Perez, Carlos Romero-Morales, Roberto Cano-de-la-Cuerda, Patricia Martín-Casas, Patricia Palomo-López, and Miguel Ángel Sánchez-Tena. 2022. "Citation Network Study on the Use of New Technologies in Neurorehabilitation" International Journal of Environmental Research and Public Health 19, no. 1: 26. https://doi.org/10.3390/ijerph19010026