Relationships between Strength and Step Frequency with Fatigue Index in Repeated Sprint Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. RSA Test
2.2. Jumping Test
2.3. Statistical Analysis
3. Results
3.1. Repetitions and Sections Analysis
3.2. Sprint Time, Step Frequency, and Step Length
3.3. Jumping Test and Relationships with RSA Performance
4. Discussion
4.1. Repetitions and Sections Analysis during RSA Test
4.2. Sprint Time, Step Frequency and Step Length
4.3. Jump Test and Relationship with RSA
5. Conclusions
5.1. Practical Applications
5.2. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGuinness, A.; Passmore, D.; Malone, S.; Collins, K. Peak Running Intensity of Elite Female Field Hockey Players During Competitive Match Play. J. Strength Cond. Res. 2020. publish ahead of print. [Google Scholar] [CrossRef]
- Aughey, R.J. Australian Football Player Work Rate: Evidence of Fatigue and Pacing? Int. J. Sports Physiol. Perform. 2010, 5, 394–405. [Google Scholar] [CrossRef]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F.M. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Rampinini, E.; Bishop, D.; Marcora, S.M.; Ferrari Bravo, D.; Sassi, R.; Impellizzeri, F.M. Validity of Simple Field Tests as Indicators of Match-Related Physical Performance in Top-Level Professional Soccer Players. Int. J. Sports Med. 2007, 28, 228–235. [Google Scholar] [CrossRef]
- Wragg, C.B.; Maxwell, N.S.; Doust, J.H. Evaluation of the reliability and validity of a soccer-specific field test of repeated sprint ability. Eur. J. Appl. Physiol. 2000, 83, 77–83. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Bishop, D.; Ferrari Bravo, D.; Tibaudi, A.; Wisloff, U. Validity of a repeated-sprint test for football. Int. J. Sports Med. 2008, 29, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.; Lawrence, S.; Rechichi, C.; Bishop, D.; Dawson, B.; Goodman, C. Time–motion analysis of elite field hockey, with special reference to repeated-sprint activity. J. Sports Sci. 2004, 22, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.; Rechichi, C.; Lawrence, S.; Dawson, B.; Bishop, D.; Goodman, C. Time-motion analysis of elite field hockey during several games in succession: A tournament scenario. J. Sci. Med. Sport 2005, 8, 382–391. [Google Scholar] [CrossRef]
- Glaister, M. Multiple Sprint Work. Sports Med. 2005, 35, 757–777. [Google Scholar] [CrossRef]
- López-Segovia, M.; Pareja-Blanco, F.; Jiménez-Reyes, P.; González-Badillo, J.J. Determinant Factors of Repeat Sprint Sequences in Young Soccer Players. Int. J. Sports Med. 2015, 36, 130–136. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Delhomel, G.; Brughelli, M.; Ahmaidi, S. Improving Repeated Sprint Ability in Young Elite Soccer Players: Repeated Shuttle Sprints Vs. Explosive Strength Training. J. Strength Cond. Res. 2010, 24, 2715–2722. [Google Scholar] [CrossRef]
- Gleadhill, S.; Nagahara, R. Kinetic and kinematic determinants of female sprint performance. J. Sports Sci. 2021, 39, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Quinn, T.J.; Dempsey, S.L.; LaRoche, D.P.; Mackenzie, A.M.; Cook, S.B. Step Frequency Training Improves Running Economy in Well-Trained Female Runners. J. Strength Cond. Res. 2021, 35, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Brocherie, F.; Morin, J.; Degache, F.; Millet, G.P. Comparison of Four Sections for Analyzing Running Mechanics Alterations During Repeated Treadmill Sprints. J. Appl. Biomech. 2015, 31, 389–395. [Google Scholar] [CrossRef]
- González-Frutos, P.; Morencos, E.; Mallo, J.; Veiga, S. Step frequency and length alterations during repeated sprint test in elite female hockey players. J. Strength Cond. Res. 2020, 34, 13–14. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Lockie, R.G.; Cronin, J.B.; Jalilvand, F. Effect of different sprint training methods on sprint performance over various distances: A brief review. J. Strength Cond. Res. 2016, 30, 1767–1785. [Google Scholar] [CrossRef]
- Morris, C.G.; Weber, J.A.; Netto, K.J. Relationship between mechanical effectiveness in sprint running and force-velocity characteristics of a countermovement jump in Australian rules football athletes. J. Strength Cond. Res. 2020. publish ahead of print. [Google Scholar] [CrossRef]
- Furlong, L.-A.M.; Harrison, A.J.; Jensen, R.L. Measures of Strength and Jump Performance Can Predict 30-m Sprint Time in Rugby Union Players. J. Strength Cond. Res. 2021, 35, 2579–2583. [Google Scholar] [CrossRef]
- Vélez, M. El entrenamiento de fuerza para la mejora del salto. Apunt. Sports Med. 1992, 29, 139–156. [Google Scholar]
- Ferrer Contreras, M.C. Efectos de dos métodos de entrenamiento de fuerza sobre el Índice de Bosco en jugadoras de balonmano de División de Honor. Retos. Nuevas Tend. En Educ. Física Deporte Y Recreación 2007, 11, 33–36. [Google Scholar]
- Jiménez-Reyes, P.; Pareja-Blanco, F.; Cuadrado-Peñafiel, V.; Ortega-Becerra, M.; Párraga, J.; González-Badillo, J.J. Jump height loss as an indicator of fatigue during sprint training. J. Sports Sci. 2019, 37, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- González-Frutos, P.; Morencos, E.; Arias-Tomé, A. Relationship between force-velocity profile with repeated sprint ability and change of direction abilities. In XI International Symposium in Strength Training; Benito, P.J., Peinado, A.B., Cupeiro, R., Calderón, F.J., Eds.; Universidad Politécnica de Madrid: Madrid, Spain, 2018; pp. 52–54. ISBN 978-84-09-03688-2. [Google Scholar]
- Spencer, M.; Fitzsimonsc, M.; Dawson, B.; Bishop, D.; Goodman, C. Reliability of a repeated-sprint test for field-hockey. J. Sci. Med. Sport 2006, 9, 181–184. [Google Scholar] [CrossRef] [PubMed]
- González-Frutos, P.; Veiga, S.; Mallo, J.; Navarro, E. Spatiotemporal comparisons between elite and high-level 60 m hurdlers. Front. Psychol. 2019, 10, 2525. [Google Scholar] [CrossRef] [PubMed]
- González-Frutos, P.; Veiga, S.; Mallo, J.; Navarro, E. Evolution of the Hurdle-Unit Kinematic Parameters in the 60 m Indoor Hurdle Race. Appl. Sci. 2020, 10, 7807. [Google Scholar] [CrossRef]
- Girard, O.; Racinais, S.; Kelly, L.; Millet, G.P.; Brocherie, F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur. J. Appl. Physiol. 2011, 111, 2547–2555. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Janicijevic, D.; Knezevic, O.M.; Mirkov, D.M.; Pérez-Castilla, A.; Petrovic, M.; Samozino, P.; Garcia-Ramos, A. Assessment of the force-velocity relationship during vertical jumps: Influence of the starting position, analysis procedures and number of loads. Eur. J. Sport Sci. 2020, 20, 614–623. [Google Scholar] [CrossRef]
- Cohen, J.A. Power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, Y. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- van den Tillaar, R. Comparison of Step-by-Step Kinematics in Repeated 30-m Sprints in Female Soccer Players. J. Strength Cond. Res. 2018, 32, 1923–1928. [Google Scholar] [CrossRef]
- Brocherie, F.; Millet, G.P.; Girard, O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. Eur. J. Appl. Physiol. 2015, 115, 891–903. [Google Scholar] [CrossRef] [Green Version]
- James, C.; Girard, O. In-Season Repeated-Sprint Training in Hypoxia in International Field Hockey Players. Front. Sports Act. Living 2020, 2, 66. [Google Scholar] [CrossRef]
- Mackala, K.; Fostiak, M.; Schweyen, B.; Osik, T.; Coch, M. Acute Effects of a Speed Training Program on Sprinting Step Kinematics and Performance. Int. J. Environ. Res. Public Health 2019, 16, 3138. [Google Scholar] [CrossRef] [Green Version]
- Dellal, A.; Wong, D.P. Repeated sprint and change-of-direction abilities in soccer players: Effects of age group. J. Strength Cond. Res. 2013, 27, 2504–2508. [Google Scholar] [CrossRef]
- Stojanovic, M.D.; Ostojic, S.M.; Calleja-González, J.; Milosevic, Z.; Mikic, M. Correlation between explosive strength, aerobic power and repeated sprint ability in elite basketball players. J. Sports Med. Phys. Fit. 2012, 52, 375–378. [Google Scholar]
- Ramirez-Campillo, R.; Gentil, P.; Negra, Y.; Grgic, J.; Girard, O. Effects of Plyometric Jump Training on Repeated Sprint Ability in Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Mccaulley, G.O.; Triplett, N.T.; McBride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sport Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Gorostiaga, E.M.; Izquierdo, M.; Ruesta, M.; Iribarren, J.; Gonzalez-Badillo, J.J.; Ibanez, J. Strength training effects on physical performance and serum hormones in young soccer players. Eur. J. Appl. Physiol. 2004, 91, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Pareja-Blanco, F.; Balsalobre-Fernández, C.; Cuadrado-Peñafiel, V.; Ortega-Becerra, M.A.; González-Badillo, J.J. Jump-Squat Performance and Its Relationship with Relative Training Intensity in High-Level Athletes. Int. J. Sports Physiol. Perform. 2015, 10, 1036–1040. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef] [PubMed]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.E.; Housh, T.J.; Ben Kibler, W.; Kraemer, W.J.; Triplett, N.T. American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports. Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Paz-Franco, A.; Rey, E.; Barcala-Furelos, R. Effects of 3 Different Resistance Training Frequencies on Jump, Sprint, and Repeated Sprint Ability Performances in Professional Futsal Players. J. Strength Cond. Res. 2017, 31, 3343–3350. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Garcia-Ramos, A.; Párraga-Montilla, J.A.; Morcillo-Losa, J.A.; Cuadrado-Peñafiel, V.; Castaño-Zambudio, A.; Samozino, P.; Morin, J.-B. Seasonal Changes in the Sprint Acceleration Force-Velocity Profile of Elite Male Soccer Players. J. Strength Cond. Res. 2022, 36, 70–74. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Edouard, P.; Samozino, P.; Brughelli, M.; Cross, M.; Ross, A.; Gill, N.; Morin, J.B. Field monitoring of sprinting power–force–velocity profile before, during and after hamstring injury: Two case reports. J. Sport Sci. 2016, 34, 535–541. [Google Scholar] [CrossRef] [PubMed]
Variables | Repetition | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
Sprint Time | 1.0 ± 0.4% | 2.1 ± 0.5% * | 3.2 ± 0.6% * | 3.5 ± 0.8% * | 4.1 ± 0.5% * |
Step Frequency | −1.6 ± 0.4% | −3.3 ± 0.5% * | −3.9 ± 0.7% * | −4.4 ± 0.8% * | −4.0 ± 0.6% * |
Step Length | 0.6 ± 0.4% | 1.3 ± 0.5% | 0.9 ± 0.5% | 1.1 ± 0.5% | 0.1 ± 0.5% |
Variables | Sprint Time | Step Frequency | Step Length | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Best | Mean | Worst | FImean | FIworst | Best | Mean | Worst | FImean | FIworst | Best | Mean | Worst | FImean | FIworst | |
best | r | 0.973 | 0.928 | −0.060 | −0.060 | 0.966 | 0.925 | −0.041 | −0.163 | 0.999 | 0.992 | 0.314 | 0.313 | |||
p | 0.000 | 0.000 | 0.846 | 0.846 | 0.000 | 0.000 | 0.894 | 0.594 | 0.000 | 0.000 | 0.297 | 0.298 | ||||
mean | r | 0.985 | 0.170 | 0.161 | 0.990 | −0.298 | −0.409 | 0.995 | 0.281 | 0.286 | ||||||
p | 0.000 | 0.579 | 0.599 | 0.000 | 0.323 | 0.165 | 0.000 | 0.353 | 0.344 | |||||||
worst | r | 0.298 | 0.317 | −0.412 | −0.526 | 0.223 | 0.200 | |||||||||
p | 0.323 | 0.292 | 0.162 | 0.065 | 0.465 | 0.511 | ||||||||||
FImean | r | 0.951 | 0.979 | 0.856 | ||||||||||||
p | 0.000 | 0.000 | 0.000 |
Sprint Time | Step Length | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Step Frequency | Best | Mean | Worst | FImean | FIworst | Best | Mean | Worst | FImean | FIworst | |
best | r | −0.352 | −0.380 | −0.389 | −0.131 | −0.152 | −0.707 | −0.707 | −0.703 | −0.195 | −0.242 |
p | 0.238 | 0.200 | 0.189 | 0.670 | 0.620 | 0.009 | 0.010 | 0.014 | 0.524 | 0.426 | |
mean | r | −0.268 | −0.343 | −0.380 | −0.337 | −0.343 | −0.752 | −0.751 | −0.731 | −0.185 | −0.237 |
p | 0.376 | 0.251 | 0.201 | 0.260 | 0.252 | 0.003 | 0.003 | 0.005 | 0.545 | 0.436 | |
worst | r | −0.234 | −0.328 | −0.377 | −0.420 | −0.423 | −0.758 | −0.756 | −0.738 | −0.185 | −0.217 |
p | 0.442 | 0.273 | 0.204 | 0.153 | 0.149 | 0.003 | 0.003 | 0.004 | 0.545 | 0.476 | |
FImean | r | −0.246 | −0.060 | 0.049 | 0.814 | 0.767 | 0.359 | 0.357 | 0.362 | 0.009 | 0.048 |
p | 0.417 | 0.846 | 0.873 | 0.001 | 0.002 | 0.228 | 0.232 | 0.224 | 0.976 | 0.877 | |
FIworst | r | −0.170 | 0.012 | 0.119 | 0.793 | 0.759 | 0.426 | 0.420 | 0.424 | 0.078 | 0.067 |
p | 0.579 | 0.969 | 0.698 | 0.001 | 0.003 | 0.147 | 0.153 | 0.149 | 0.800 | 0.827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Frutos, P.; Aguilar-Navarro, M.; Morencos, E.; Mallo, J.; Veiga, S. Relationships between Strength and Step Frequency with Fatigue Index in Repeated Sprint Ability. Int. J. Environ. Res. Public Health 2022, 19, 196. https://doi.org/10.3390/ijerph19010196
González-Frutos P, Aguilar-Navarro M, Morencos E, Mallo J, Veiga S. Relationships between Strength and Step Frequency with Fatigue Index in Repeated Sprint Ability. International Journal of Environmental Research and Public Health. 2022; 19(1):196. https://doi.org/10.3390/ijerph19010196
Chicago/Turabian StyleGonzález-Frutos, Pablo, Millán Aguilar-Navarro, Esther Morencos, Javier Mallo, and Santiago Veiga. 2022. "Relationships between Strength and Step Frequency with Fatigue Index in Repeated Sprint Ability" International Journal of Environmental Research and Public Health 19, no. 1: 196. https://doi.org/10.3390/ijerph19010196
APA StyleGonzález-Frutos, P., Aguilar-Navarro, M., Morencos, E., Mallo, J., & Veiga, S. (2022). Relationships between Strength and Step Frequency with Fatigue Index in Repeated Sprint Ability. International Journal of Environmental Research and Public Health, 19(1), 196. https://doi.org/10.3390/ijerph19010196