The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Intervention
2.4. Outcome Measures
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | eyes closed |
EO | eyes open |
fMRI | functional magnetic neuroimaging |
IMT | Informational Manual Therapy |
kg | kilograms |
m | meters |
SD | standard deviation |
SF-36 | 36-Item Short Form Survey |
SRM | secondary respiratory mechanism |
UIC | International University of Catalonia |
References
- Rao, A.; Hickman, L.D.; Sibbritt, D.; Newton, P.J.; Phillips, J.L. Is energy healing an effective non-pharmacological therapy for improving symptom management of chronic illnesses? A systematic review. Complement. Ther. Clin. Pract. 2016, 25, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Gatt, A.; Agarwal, S.; Zito, P.M. Anatomy, Fascia Layers; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Conn, P.M. Neuroscience in Medicine, 3rd ed.; Humana Press Inc.: Totowa, NJ, USA, 2008; ISBN 9781603274555. [Google Scholar]
- Castro-Sánchez, A.M.; Lara-Palomo, I.C.; Matarán-Peñarrocha, G.A.; Saavedra-Hernández, M.; Pérez-Mármol, J.M.; Aguilar-Ferrándiz, M.E. Benefits of craniosacral therapy in patients with chronic low back pain: A randomized controlled trial. J. Altern. Complement. Med. 2016, 22, 650–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordoni, B.; Zanier, E. Clinical and symptomatological reflections: The fascial system. J. Multidiscip. Healthc. 2014, 7, 401–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, L.; Hanson, B.; Gilliam, S. Pilot study of the effects of mixed light touch manual therapies on active duty soldiers with chronic post-traumatic stress disorder and injury to the head. J. Bodyw. Mov. Ther. 2016, 20, 42–51. [Google Scholar] [CrossRef]
- Robinson, J.; Biley, F.C.; Dolk, H. Therapeutic touch for anxiety disorders. Cochrane Database Syst. Rev. 2007, 2007, CD006240. [Google Scholar] [CrossRef]
- Stefano, G.B.; Fricchione, G.L.; Slingsby, B.T.; Benson, H. The placebo effect and relaxation response: Neural processes and their coupling to constitutive nitric oxide. Brain Res. Rev. 2001, 35, 1–19. [Google Scholar] [CrossRef]
- McGlone, F.; Wessberg, J.; Olausson, H. Discriminative and affective touch: Sensing and feeling. Neuron 2014, 82, 737–755. [Google Scholar] [CrossRef] [Green Version]
- Jütte, R. Haptic perception: An historical approach. In Human Haptic Perception: Basics and Applications; Birkhauser: Basel, Switzerland, 2008; pp. 3–13. ISBN 9783764376123. [Google Scholar]
- Aoyama, N.; Fujii, O.; Yamamoto, T. Efficacy of parietal acupoint therapy: Scalp acupuncture for neck/shoulder stiffness with related mood disturbance. Med. Acupunct. 2017, 29, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Embong, N.H.; Soh, Y.C.; Ming, L.C.; Wong, T.W. Revisiting reflexology: Concept, evidence, current practice, and practitioner training. J. Tradit. Complement. Med. 2015, 5, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.; Reis, A.M.; Matos, L.C.; Machado, J.; Moreira, A. Does auriculotherapy have therapeutic effectiveness? An overview of systematic reviews. Complement. Ther. Clin. Pract. 2018, 33, 61–70. [Google Scholar] [CrossRef]
- Nelson, K.E.; Sergueef, N.; Glonek, T. Recording the rate of the cranial rhythmic impulse. J. Am. Osteopat. Assoc. 2006, 106, 337–341. [Google Scholar]
- Moskalenko, I.E.; Frymann, V.; Vainshtein, G.B.; Semernia, V.N.; Kravchenko, T.I.; Markovets, S.P.; Panov, A.A.; Maiorova, N.F. Slow rhythmic oscillations within the human cranium: Phenomenology, origin, informational significance. Fiziol. Cheloveka 2001, 27, 47–55. [Google Scholar] [CrossRef]
- Stecco, C.; Porzionato, A.; Lancerotto, L.; Stecco, A.; Macchi, V.; Day, J.A.; Caro, R. De Histological study of the deep fasciae of the limbs. J. Bodyw. Mov. Ther. 2008, 12, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Macchi, V.; Porzionato, A.; Duparc, F.; De Caro, R. The fascia: The forgotten structure. Ital. J. Anat. Embryol. 2011, 116, 127–138. [Google Scholar] [PubMed]
- Sharkey, J.J. Should bone be considered fascia: Proposal for a change in taxonomy of bone- a clinical anatomist’s view. Int. J. Biol. Pharm. Sci. Arch. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Whedon, J.M.; Glassey, D. Cerebrospinal fluid stasis and its clinical significance. Altern. Ther. Health Med. 2009, 15, 54–60. [Google Scholar]
- Ferguson, A. A review of the physiology of cranial osteopathy. J. Osteopath. Med. 2003, 6, 74–84. [Google Scholar] [CrossRef]
- Wilke, J.; Schleip, R.; Yucesoy, C.A.; Banzer, W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J. Appl. Physiol. 2018, 124, 234–244. [Google Scholar] [CrossRef]
- Verlinden, T.J.M.; van Dijk, P.; Herrler, A.; de Gier–de Vries, C.; Lamers, W.H.; Köhler, S.E. The human phrenic nerve serves as a morphological conduit for autonomic nerves and innervates the caval body of the diaphragm. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Benias, P.C.; Wells, R.G.; Sackey-Aboagye, B.; Klavan, H.; Reidy, J.; Buonocore, D.; Miranda, M.; Kornacki, S.; Wayne, M.; Carr-Locke, D.L.; et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Jasinoski, S.C.; Reddy, B.D. Mechanics of cranial sutures during simulated cyclic loading. J. Biomech. 2012, 45, 2050–2054. [Google Scholar] [CrossRef]
- Ballester-Rodés, M.; Carreras-Costa, F.; Versyp-Ducaju, T.; Ballester-Rodés, M.; Mehta, D. Field dynamics in atrioventricular activation. Clinical evidence of a specific field-to-protein interaction. Med. Hypotheses 2019, 124, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Cifra, M.; Apollonio, F.; Liberti, M.; García-Sánchez, T.; Mir, L.M. Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int. J. Biometeorol. 2021, 65, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, R.H.W.; Monsees, T.; Özkucur, N. Electromagnetic effects–From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Gu, L.; Chafi, M.S.; Ganpule, S.; Chandra, N. The influence of heterogeneous meninges on the brain mechanics under primary blast loading. Compos. Part B Eng. 2012, 43, 3160–3166. [Google Scholar] [CrossRef] [Green Version]
- Page, P.; Frank, C.; Lardner, R. Assessment and treatment of muscle imbalance: The Janda approach. J. Can. Chiropr. Assoc. 2012, 56, 158. [Google Scholar]
- Huijing, P.A.; van de Langenberg, R.W.; Meesters, J.J.; Baan, G.C. Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. J. Electromyogr. Kinesiol. 2007, 17, 680–689. [Google Scholar] [CrossRef]
- Schleip, R. Fascial plasticity–A new neurobiological explanation: Part 1. J. Bodyw. Mov. Ther. 2003, 7, 11–19. [Google Scholar] [CrossRef]
- Schleip, R.; Wilke, J.; Schreiner, S.; Wetterslev, M.; Klingler, W. Needle biopsy-derived myofascial tissue samples are sufficient for quantification of myofibroblast density. Clin. Anat. 2018, 31, 368–372. [Google Scholar] [CrossRef]
- Levin, S.; de Solórzano, S.L.; Scarr, G. The significance of closed kinematic chains to biological movement and dynamic stability. J Bodyw Mov Ther. 2017, 664–672. [Google Scholar] [CrossRef]
- Abenavoli, A.; Pisa, S.; Maggiani, A. A pilot study of jugular compression (Queckenstedt maneuver) for cranial movement perception. J. Am. Osteopath. Assoc. 2020, 120, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Skedung, L.; Arvidsson, M.; Chung, J.Y.; Stafford, C.M.; Berglund, B.; Rutland, M.W. Feeling small: Exploring the tactile perception limits. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterka, R.J.; Loughlin, P.J. Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 2004, 91, 410–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.; Gurfinkel, V.S. Human postural control. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Cordo, P.J.; Flores-Vieira, C.; Verschueren, S.M.P.; Timothy Inglis, J.; Gurfinkel, V. Position sensitivity of human muscle spindles: Single afferent and population representations. J. Neurophysiol. 2002, 87, 1186–1195. [Google Scholar] [CrossRef] [Green Version]
- Philippi, H.; Faldum, A.; Schleupen, A.; Pabst, B.; Jung, T.; Bergmann, H.; Bieber, I.; Kaemmerer, C.; Dijs, P.; Reitter, B. Infantile postural asymmetry and osteopathic treatment: A randomized therapeutic trial. Dev. Med. Child Neurol. 2006, 48, 5–9. [Google Scholar] [CrossRef]
- Pan, J.; Liu, C.; Zhang, S.; Li, L. Tai Chi can improve postural stability as measured by resistance to perturbation related to upper limb movement among healthy older adults. Evid. Based Complement. Altern. Med. 2016, 2016. [Google Scholar] [CrossRef]
- Des Jarlais, D.C.; Lyles, C.; Crepaz, N. Improving the Reporting Quality of Nonrandomized Evaluations of Behavioral and Public Health Interventions: The TREND Statement. Am. J. Public Health 2004, 94, 361–366. [Google Scholar] [CrossRef]
- Rodríguez-Rubio, P.R.; Bagur-Calafat, C.; López-De-celis, C.; Bueno-Gracía, E.; Cabanas-Valdés, R.; Herrera-Pedroviejo, E.; Girabent-Farrés, M. Validity and reliability of the satel 40 HZ stabilometric force platform for measuring quiet stance and dynamic standing balance in healthy subjects. Int. J. Environ. Res. Public Health 2020, 17, 7733. [Google Scholar] [CrossRef]
- Tuncay, I.; Kucuker, H.; Uzun, I.; Karalezli, N. The fascial band from semitendinosus to gastrocnemius: The critical point of hamstring harvesting–An anatomical study of 23 cadavers. Acta Orthop. 2007, 78, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Marelli, F.; Morabito, B.; Castagna, R. A new concept of biotensegrity incorporating liquid tissues: Blood and lymph. J. Evid. Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, T.W. Tension-dependent structures in a stretch-activated system. J. Bodyw. Mov. Ther. 2020, 24, 131–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingber, D.E. The architecture of life. Sci. Am. 1998, 278, 48–57. [Google Scholar] [CrossRef]
- Chaitow, L. Understanding mechanotransduction and biotensegrity from an adaptation perspective. J. Bodyw. Mov. Ther. 2013, 17, 141–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vora, A.J.; Doerr, K.D.; Wolfer, L.R. Functional anatomy and pathophysiology of axial low back pain: Disc, posterior elements, sacroiliac joint, and associated pain generators. Phys. Med. Rehabil. Clin. N. Am. 2010, 21, 679–709. [Google Scholar] [CrossRef] [PubMed]
- Vleeming, A.; Volkers, A.C.; Snijders, C.J.; Stoeckart, R. Relation between form and function in the sacroiliac joint part II: Biomechanical aspects. Spine 1990, 15, 133–136. [Google Scholar] [CrossRef]
- Vleeming, A.; Stoeckart, R.; Volkers, A.C.; Snijders, C.J. Relation between form and function in the sacroiliac joint part I: Clinical anatomical aspects. Spine 1990, 15, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Pardehshenas, H.; Maroufi, N.; Sanjari, M.A.; Parnianpour, M.; Levin, S.M. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints. J. Bodyw. Mov. Ther. 2014, 18, 633–642. [Google Scholar] [CrossRef]
- Dischiavi, S.L.; Wright, A.A.; Hegedus, E.J.; Bleakley, C.M. Biotensegrity and myofascial chains: A global approach to an integrated kinetic chain. Med. Hypotheses 2018, 110, 90–96. [Google Scholar] [CrossRef]
- Scarr, G. Biotensegrity: What is the big deal? J. Bodyw. Mov. Ther. 2020, 24, 134–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adstrum, S.; Hedley, G.; Schleip, R.; Stecco, C.; Yucesoy, C.A. Defining the fascial system. J. Bodyw. Mov. Ther. 2017, 21, 173–177. [Google Scholar] [CrossRef]
- Richard, M. La Motilidad Corporal y el Concepto Sacrocraneal: Reflexiones Sobre las Bases del Método Poyet, 1st ed.; Dilema: Madrid, Spain, 2019; ISBN 9788498274684. [Google Scholar]
- Shaltout, H.A.; Tooze, J.A.; Rosenberger, E.; Kemper, K.J. Time, touch, and compassion: Effects on autonomic nervous system and well-being. Explor. J. Sci. Health 2012, 8, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Balance impairment as a risk factor for falls in community-dwelling older adults who are high functioning: A prospective study. Phys. Ther. 2010, 90, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Quek, T.T.C.; Tam, W.W.S.; Tran, B.X.; Zhang, M.; Zhang, Z.; Ho, C.S.H.; Ho, R.C.M. The global prevalence of anxiety among medical students: A meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 2735. [Google Scholar] [CrossRef] [Green Version]
- Backåberg, S.; Rask, M.; Brunt, D.; Gummesson, C. Impact of musculoskeletal symptoms on general physical activity during nursing education. Nurse Educ. Pract. 2014, 14, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandola, T.; Heraclides, A.; Kumari, M. Psychophysiological biomarkers of workplace stressors. Neurosci. Biobehav. Rev. 2010, 35, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Perrucci, M.G.; Barassi, G.; Visciano, C.; Bellomo, R.G.; Saggini, R.; Ferretti, A. Effect of manual approaches with osteopathic modality on brain correlates of interoception: An fMRI study. Sci. Rep. 2020, 10, 3214. [Google Scholar] [CrossRef] [Green Version]
- Tamburella, F.; Piras, F.; Piras, F.; Spanò, B.; Tramontano, M.; Gili, T. Cerebral perfusion changes after osteopathic manipulative treatment: A randomized manual placebo-controlled trial. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Tramontano, M.; Cerritelli, F.; Piras, F.; Spanò, B.; Tamburella, F.; Piras, F.; Caltagirone, C.; Gili, T. Brain connectivity changes after osteopathic manipulative treatment: A randomized manual placebo-controlled trial. Brain Sci. 2020, 10, 969. [Google Scholar] [CrossRef]
- Stecco, C.; Sfriso, M.M.; Porzionato, A.; Rambaldo, A.; Albertin, G.; Macchi, V.; De Caro, R. Microscopic anatomy of the visceral fasciae. J. Anat. 2017, 231, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Marelli, F.; Morabito, B.; Sacconi, B. Emission of biophotons and adjustable sounds by the fascial system: Review and reflections for manual therapy. J. Evid. Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vase, L.; Wartolowska, K. Pain, placebo, and test of treatment efficacy: A narrative review. Br. J. Anaesth. 2019, 123, e254–e262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean (SD) | Median (1–3Q) | ||
---|---|---|---|
Age | 35.1 (13.1) | 33 (24–45) | |
The mean length of their right foot | 39.9 (2.9) | 39 (38–42) | |
Height | 1.7 (0.01) | 1.7 (1.6–1,8) | |
Weight | 66 (14.9) | 63 (55–74) | |
Mean body mass index | 28.8 (7.4) | 26.8 (33.9–43,2) | |
Age group | Total | Women | Men |
18–35 years | 30 (52.6%) | 18 (48.6%) | 12 (60%) |
35–50 years | 17 (29.8%) | 11 (29.7%) | 6 (30%) |
50–65 years | 10 (17.6%) | 8 (21.6%) | 2 (10%) |
Pre (T0) n: 57 | Post (T1) n: 57 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | SEM | Median (Q1–Q3) | CV(%) * | Mean (SD) | SEM | Median (Q1–Q3) | CV(%) * | ||
Eyes Open | |||||||||
Surface | 245 (98.7) | 13.1 | 242 (172.7–310.4) | 40.3 | 256.5 (148.4) | 148.4 | 217.3 (154.6–304.5) | 57.9 | 0.975 |
Xm | 3.1 (6.4) | 0.8 | 3 (−0.2–7.4) | 206.5 | 3.4 (6.1) | 6.1 | 3.5 (0.3–7.2) | 179.4 | 0.606 |
Ym | −46.9 (12) | 1.6 | −45.2 (−53.4–38) | −46.4 (9) | 9 | −46.8 (−52.4–38.4) | 0.997 | ||
Length | 500 (142) | 18.8 | 463.4 (400.1–592.8) | 28.4 | 470.2 (138.7) | 138.7 | 421 (381–550.5) | 29.5 | 0.002 |
Lx | 275.5 (80.8) | 10.7 | 258.7 (222–327.9) | 29.3 | 256.6 (75.8) | 75.8 | 237.8 (212.2–305.2) | 29.5 | 0.004 |
Ly | 357.5 (110.3) | 14.6 | 322 (278.2–425.7) | 30.9 | 338.8 (107.5) | 107.5 | 299.8 (258.2–389.3) | 31.7 | 0.003 |
s X maximum | 12.5 (6.7) | 0.9 | 13.7 (8.4–16.9) | 53.6 | 12.4 (6.6) | 6.6 | 13.4 (8.9–16) | 53.2 | 0.987 |
s X minimum | −6.7 (6.7) | 0.9 | −7.3 (−10.6–2.7) | −6.1 (6.2) | 6.2 | −5.3 (−9.8–2.2) | 0.489 | ||
s X amplitude | 19.2 (5) | 0.7 | 18.6 (16–23.2) | 26 | 18.4 (5) | 5 | 18.3 (14.1–21.1) | 27.2 | 0.089 |
s Y maximum | −34.3 (12.1) | 1.6 | −34.4 (−41–27) | −34.7 (11) | 11 | −33.2 (−43.7–27.6) | 0.546 | ||
s Y minimum | −60 (13.3) | 1.8 | −59.5 (−68–50) | −59.1 (12.3) | 12.3 | −57 (−66.8–49.8) | 0.187 | ||
s Y amplitude | 25.6 (6.3) | 0.8 | 25.7 (21.5–29.5) | 24.6 | 24.4 (6.2) | 6.2 | 23.1 (20.3–29) | 25.4 | 0.04 |
Eyes Closed | |||||||||
Surface | 229.7 (107.4) | 14.2 | 223.4 (144–280.1) | 46.8 | 234.7 (147.5) | 147.5 | 177.5 (131.4–310.5) | 62.8 | 0.849 |
Xm | 3.7 (7) | 0.9 | 4.5 (−1.6–8.6) | 189.2 | 3.5 (6.4) | 6.4 | 3.6 (0.2–7.5) | 182.9 | 0.927 |
Ym | −44.9 (12.6) | 1.7 | −44.3 (−48.9–36.8) | −46.6 (9.1) | 9.1 | −45 (−53–39.5) | 0.074 | ||
Length | 617.5 (207.1) | 27.4 | 563.7 (462.1–772.2) | 33.5 | 564.4 (209.1) | 209.1 | 496.2 (418.3–714.8) | 37 | 0 |
Lx | 338.1 (114.4) | 15.2 | 313.1 (245.1–446.4) | 33.8 | 307.9 (112.3) | 112.3 | 295.7 (218–393.4) | 36.5 | 0.002 |
Ly | 442.3 (164.3) | 21.8 | 380.9 (319.8–565.2) | 37.1 | 405.4 (161.9) | 161.9 | 356.1 (301.9–501.5) | 39.9 | 0.001 |
s X maximum | 13.5 (7.3) | 1.0 | 14.7 (10.9–18) | 54.1 | 13.2 (7.3) | 7.3 | 13.2 (9.7–17.8) | 55.3 | 0.769 |
s X minumum | −6.9 (7.6) | 1.0 | −8.1 (−11.8–0.3) | −6.7 (7.7) | 7.7 | −6.7 (−11.1–2) | 0.432 | ||
s X amplitude | 20.5 (6) | 0.8 | 20.3 (15.8–26.2) | 29.3 | 19.9 (7.3) | 7.3 | 18.2 (14.4–24.9) | 36.7 | 0.578 |
s Y maximum | −32.9 (13.4) | 1.8 | −33.1 (−38.6–24.7) | −35 (10.2) | 10.2 | −32.6 (−43.8–27.8) | 0.078 | ||
s Y minimum | −57.1 (12.8) | 1.7 | −54.4 (−63.2–49.4) | −58.7 (10.1) | 10.1 | −58.2 (−63.9–51.2) | 0.053 | ||
s Y amplitude | 24.2 (7) | 0.9 | 22.6 (19.4–28.7) | 28.9 | 23.7 (9.1) | 9.1 | 21.2 (17.5–27.3) | 38.4 | 0.436 |
1st Post (T1) n: 41 | 2nd Post (T2) n: 41 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | SEM | Median (Q1–Q3) | CV(%) * | Mean (SD) | SEM | Median (Q1–Q3) | CV(%) * | |||
Eyes Open | ||||||||||
Surface | 245 (149.2) | 23.3 | 196.5 (147.1–272.6) | 60.9 | 225.8 (99.4) | 35.3 | 194.3 (152.1–278.3) | 44 | 0.361 | |
Xm | 3.9 (6.2) | 1.0 | 4.7 (0.9–7.8) | 159 | 2.7 (5.8) | 0.4 | 2.7 (−0.8–5.4) | 214.8 | 0.184 | |
Ym | −45.5 (8.5) | 1.3 | −44.8 (−51–38.4) | −46.1 (12.8) | −7.2 | −44.3 (−55.1–37) | 0.411 | |||
Length | 459.3 (142) | 22.2 | 408.8 (366.2–528.2) | 30.9 | 501.8 (145.2) | 78.4 | 456.7 (410–558.2) | 28.9 | 0.001 | |
Lx | 246.8 (72.7) | 11.4 | 218.3 (204.3–303.7) | 29.5 | 269.8 (75.3) | 42.1 | 242 (221.9–331.5) | 27.9 | 0.013 | |
Ly | 334.8 (112.7) | 17.6 | 299 (254–377.2) | 33.7 | 363.7 (119.3) | 56.8 | 324.8 (290.9–409.9) | 32.8 | 0.002 | |
s X maximum | 12.3 (6.6) | 1.0 | 13.2 (9.6–15.9) | 53.7 | 11.9 (5.6) | 1.9 | 11.8 (10.1–15.5) | 47.1 | 0.672 | |
s X minimum | −5.3 (6.1) | 1.0 | −4.8 (−9.4–1.4) | −6.1 (6.5) | −1.0 | −7.3 (−10.9–1.5) | 0.441 | |||
s X amplitude | 17.6 (4.8) | 0.7 | 18 (13.6–20.4) | 27.3 | 18.1 (4.6) | 2.8 | 17.5 (14.4–21.2) | 25.4 | 0.418 | |
s Y maximum | −33.3 (11.5) | 1.8 | −31 (−41.8–27) | −33.6 (13.3) | −5.2 | −32.5 (−44.2–23.8) | 0.808 | |||
s Y minimum | −57.7 (11.8) | 1.8 | −55.8 (−65.1–47.7) | −58.5 (14.3) | −9.1 | −58.3 (−67.3–48.4) | 0.758 | |||
s Y amplitude | 24.4 (5.6) | 0.9 | 24.2 (20.6–29) | 23 | 24.8 (7.1) | 3.9 | 22.4 (20.6–28.7) | 28.6 | 0.837 | |
Eyes Closed | ||||||||||
Surface | 226.3 (152.9) | 23.9 | 166 (120.7–264.7) | 67.6 | 224.3 (108.6) | 35.0 | 196.8 (126.5–335.8) | 48.4 | 0.72 | |
Xm | 4.2 (6.6) | 1.0 | 4.1 (1.1–8) | 157.1 | 3.3 (6.2) | 0.5 | 4.3 (−1.4–7.4) | 187.9 | 0.202 | |
Ym | −46 (8.9) | 1.4 | −42.3 (−51–39.3) | −45.1 (11.8) | −7.0 | −45.3 (−50–37.1) | 0.778 | |||
Length | 558.3 (227) | 35.5 | 486.9 (410.1–639.1) | 40.7 | 607.6 (194.2) | 94.9 | 554.7 (482.1–740.4) | 32 | 0.016 | |
Lx | 301.8 (117.8) | 18.4 | 269.8 (202.9–379.8) | 39 | 326.7 (102.7) | 51.0 | 303.3 (245.5–393) | 31.4 | 0.069 | |
Ly | 403.8 (175.9) | 27.5 | 353.5 (300–465.3) | 43.6 | 441.5 (155.5) | 69.0 | 387.1 (342.8–496) | 35.2 | 0.019 | |
s X maximum | 13.5 (7.1) | 1.1 | 13.8 (10.1–17.8) | 52.6 | 12.9 (6.9) | 2.0 | 14.2 (8.6–17.1) | 53.5 | 0.48 | |
s X minimum | −5.7 (8.3) | 1.3 | −5.2 (−11.1–0.7) | −6.8 (7) | −1.1 | −6.2 (−12.7–2.5) | 0.252 | |||
s X amplitude | 19.2 (7.4) | 1.2 | 17.1 (14.3–22.7) | 38.5 | 19.7 (6.4) | 3.1 | 18 (14.7–23) | 0.3 | 0.99 | |
s Y maximum | −34.4 (10.3) | 1.6 | −32.6 (−42.3–26.5) | −33.4 (12.5) | −5.2 | −32.5 (−40.2–24.4) | 0.581 | |||
s Y minimum | −57.8 (10.1) | 1.6 | −55.8 (−61.4–50.2) | −57.6 (13.1) | −9.0 | −57.1 (−65.4–47.8) | 0.959 | |||
s Y amplitude | 23.4 (9.9) | 1.5 | 21 (17–27.2) | 42.3 | 24.3 (8.6) | 3.8 | 22.8 (17.9–29) | 35.4 | 0.141 |
SF-36 | Physical Activity | No Physical Activity | ||||
---|---|---|---|---|---|---|
Pre (n = 41) | Post (n = 41) | p-Value | Pre (n = 8) | Post (n = 8) | p-Value | |
Bodily Pain | <0.001 | 0.261 | ||||
None | 6 (14.6%) | 19 (46.3%) | 1 (12.5%) | 4 (50%) | ||
Moderate | 16 (39%) | 15 (36.6%) | 4 (50%) | 1 (12.5%) | ||
Severe | 19 (46.3%) | 7 (17.1%) | 3 (37.5%) | 3 (37.5%) | ||
Pain Interfere work | 0.002 | 0.9691 | ||||
Not at all | 20 (48.8%) | 33 (80.5%) | 5 (62.5%) | 6 (75%) | ||
Moderately | 12 (29.3%) | 7 (17.1%) | 2 (25%) | 1 (12.5%) | ||
Extremely | 9 (21.9%) | 1 (2.4%) | 1 (12.5%) | 1 (12.5%) |
EQ-5D | Physical Activity | No Physical Activity | ||||
---|---|---|---|---|---|---|
Mean (sd) | Pre (n = 41) | Post (n = 41) | p-Value | Pre (n = 8) | Post (n = 8) | p-Value |
Mobility | 1 | 1 | ||||
No problems | 41 (100%) | 40 (97.6%) | 8 (100%) | 8 (100%) | ||
Some problems | 0 (0%) | 1 (2.4%) | 0 (0%) | 0 (0%) | ||
I am confined in bed | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Self-care | 1 | 1 | ||||
No problems | 41 (100%) | 41 (100%) | 8 (100%) | 8 (100%) | ||
Some problems | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
I am unable | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Usual activities | 1 | 1 | ||||
No problems | 40 (97.6%) | 40 (97.6%) | 8 (100%) | 8 (100%) | ||
Some problems | 1 (2.4%) | 1 (2.4%) | 0 (0%) | 0 (0%) | ||
I am unable | 0 (0%) | 0 (0%) | ||||
Pain/discomfort | 0.114 | 1 | ||||
No pain | 29 (70.7%) | 35 (85.4%) | 4 (50%) | 4 (50%) | ||
Moderate pain | 12 (29.3%) | 6 (14.6%) | 4 (50%) | 4 (50%) | ||
I have extreme pain | 0 (0%) | 0 (0%) | ||||
Anxiety/depression | 0.006 | 1 | ||||
Not anxious | 25 (61%) | 37 (90.2%) | 5 (62.5%) | 5 (62.5%) | ||
Moderately anxious | 16 (39%) | 4 (9.8%) | 3 (37.5%) | 3 (37.5%) | ||
Extremely anxious | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Physical Activity | Pre (n = 41) | Post (n = 41) | ||||
Mean (SD) | Median (1Q-3Q) | Mean (SD) | Median (1Q-3Q) | p-value | ||
EQ-VAS | 79.9 (11.57) | 80 (70–90) | 84.5 (9.6) | 85 (80–90) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabanas-Valdés, R.; Toro-Coll, M.D.; Cruz-Sicilia, S.; García-Rueda, L.; Rodríguez-Rubio, P.R.; Calvo-Sanz, J. The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population. Int. J. Environ. Res. Public Health 2021, 18, 4940. https://doi.org/10.3390/ijerph18094940
Cabanas-Valdés R, Toro-Coll MD, Cruz-Sicilia S, García-Rueda L, Rodríguez-Rubio PR, Calvo-Sanz J. The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population. International Journal of Environmental Research and Public Health. 2021; 18(9):4940. https://doi.org/10.3390/ijerph18094940
Chicago/Turabian StyleCabanas-Valdés, Rosa, Mª Dolores Toro-Coll, Sara Cruz-Sicilia, Laura García-Rueda, Pere Ramón Rodríguez-Rubio, and Jordi Calvo-Sanz. 2021. "The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population" International Journal of Environmental Research and Public Health 18, no. 9: 4940. https://doi.org/10.3390/ijerph18094940
APA StyleCabanas-Valdés, R., Toro-Coll, M. D., Cruz-Sicilia, S., García-Rueda, L., Rodríguez-Rubio, P. R., & Calvo-Sanz, J. (2021). The Immediate Effect of Informational Manual Therapy for Improving Quiet Standing and Bodily Pain in University Population. International Journal of Environmental Research and Public Health, 18(9), 4940. https://doi.org/10.3390/ijerph18094940