Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. S-LCA Framework
2.2. Definition of the Case Study
2.3. Social Life Cycle Inventory
2.4. Social Life Cycle Impact Assessment Framework
3. Results and Discussion
3.1. Social Life Cycle Impact Assessment Results
3.2. Comparative S-LCA of Biomass-to-Electricity Systems
3.3. Broadening the Discussion to Sustainability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
FU | Functional unit |
IEA | International Energy Agency |
IRR | Internal rate of return |
LCA | Life cycle assessment |
LCC | Life cycle costing |
LCI | Life cycle inventory |
moh | Medium opportunity hours |
mrh | Medium risk hours |
NPV | Net present value |
PBP | Payback period |
S-LCA | Social life cycle assessment |
S-LCI | Social life cycle inventory |
S-LCIA | Social life cycle impact assessment |
SDG | Sustainable development goal |
UNEP | United Nations Environment Programme |
References
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors? Renew. Energ. 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Welfle, A.; Thornley, P.; Röder, M. A review of the role of bioenergy modelling in renewable energy research & policy development. Biomass Bioenergy 2020, 136, 105542. [Google Scholar] [CrossRef]
- International Energy Agency. Global Energy Review 2019; IEA: Paris, France, 2020. [Google Scholar]
- International Energy Agency. Global Energy Review 2020; IEA: Paris, France, 2020. [Google Scholar]
- Bauer, N.; Klein, D.; Humpenöder, F.; Kriegler, E.; Luderer, G.; Popp, A.; Strefler, J. Bio-energy and CO2 emission reductions: An integrated land-use and energy sector perspective. Clim. Chang. 2020, 163, 1675–1693. [Google Scholar] [CrossRef]
- Ronzon, T.; Sanjuán, A.I. Friends or foes? A compatibility assessment of bioeconomy-related Sustainable Development Goals for European policy coherence. J. Clean. Prod. 2020, 254, 119832. [Google Scholar] [CrossRef]
- Arasto, A.; Chiaramonti, D.; Kiviluoma, J.; van den Heuvel, E.; Waldheim, L.; Maniatis, K.; Sipilä, K. Bioenergy’s Role in Balancing the Electricity Grid and Providing Storage Options—An EU Perspective; IEA Bioenergy: Paris, France, 2017. [Google Scholar]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energ. 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Cardoso, J.; Silva, V.; Eusébio, D. Techno-economic analysis of a biomass gasification power plant dealing with forestry residues blends for electricity production in Portugal. J. Clean. Prod. 2019, 212, 741–753. [Google Scholar] [CrossRef]
- Jongdeepaisal, C.; Nasu, S. Economic impact evaluation of a biomass power plant using a technical coefficient pre-adjustment in hybrid input-output analysis. Energies 2018, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.-L.; Wu, Z.-M.; Wang, S.-W.; Cai, Z.-Q.; Chen, T.; Farahani, M.R.; Li, D.-X. Economic assessment of biomass gasification and pyrolysis: A review. Energ. Source. Part B 2017, 12, 1030–1035. [Google Scholar] [CrossRef]
- Kaoma, M.; Gheewala, S.H. Techno-economic assessment of bioenergy options using crop and forest residues for non-electrified rural growth centres in Zambia. Biomass Bioenergy 2021, 145, 105944. [Google Scholar] [CrossRef]
- Muench, S. Greenhouse gas mitigation potential of electricity from biomass. J. Clean. Prod. 2015, 103, 483–490. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 2016, 8, 1181. [Google Scholar] [CrossRef] [Green Version]
- Paletto, A.; Bernardi, S.; Pieratti, E.; Teston, F.; Romagnoli, M. Assessment of environmental impact of biomass power plants to increase the social acceptance of renewable energy technologies. Heliyon 2019, 5, e02070. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Zhang, X.; Kumar, A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renew. Sust. Energ. Rev. 2016, 53, 1483–1499. [Google Scholar] [CrossRef]
- Chen, S.; Feng, H.; Zheng, J.; Ye, J.; Song, Y.; Yang, H.; Zhou, M. Life cycle assessment and economic analysis of biomass energy technology in China: A brief review. Processes 2020, 8, 1112. [Google Scholar] [CrossRef]
- Takeda, S.; Keeley, A.R.; Sakurai, S.; Managi, S.; Benoît Norris, C. Are renewables as friendly to humans as to the environment: A social life cycle assessment of renewable electricity. Sustainability 2019, 11, 1370. [Google Scholar] [CrossRef] [Green Version]
- Martín-Gamboa, M.; Dias, A.C.; Arroja, L.; Iribarren, D. A protocol for the definition of supply chains in product social life cycle assessment: Application to bioelectricity. Sustain. Energy Fuels 2020, 4, 5533–5542. [Google Scholar] [CrossRef]
- UNEP/SETAC. Guidelines for Social Life Cycle Assessment of Products; United Nations Environment Programme: Paris, France, 2009. [Google Scholar]
- UNEP. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020; United Nations Environment Programme: Paris, France, 2020. [Google Scholar]
- da Costa, T.P.; Quinteiro, P.; Tarelho, L.A.C.; Arroja, L.; Dias, A.C. Environmental impacts of forest biomass-to-energy conversion technologies: Grate furnace vs. fluidised bed furnace. J. Clean. Prod. 2018, 171, 153–162. [Google Scholar] [CrossRef]
- ISO. ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. ISO 14044:2006—Environmental Management—Life Cycle Assessment –Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Sureau, S.; Mazijn, B.; Russo Garrido, S.; Achten, W.M.J. Social life-cycle assessment frameworks: A review of criteria and indicators proposed to assess social and socioeconomic impacts. Int. J. Life Cycle Assess. 2018, 23, 904–920. [Google Scholar] [CrossRef]
- Dreyer, L.C.; Hauschild, M.Z.; Schierbeck, J. Characterisation of social impacts in LCA. Int. J. Life Cycle Assess. 2010, 15, 247–259. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. Int. J. Hydrog. Energy 2019, 44, 21193–21203. [Google Scholar] [CrossRef]
- Falter, C.; Valente, A.; Habersetzer, A.; Iribarren, D.; Dufour, J. An integrated techno-economic, environmental and social assessment of the solar thermochemical fuel pathway. Sustain. Energy Fuels 2020, 4, 3992–4002. [Google Scholar] [CrossRef]
- Parent, J.; Cucuzzella, C.; Revéret, J.P. Impact assessment in SLCA: Sorting the sLCIA methods according to their outcomes. Int. J. Life Cycle Assess. 2010, 15, 164–171. [Google Scholar] [CrossRef]
- Sureau, S.; Neugebauer, S.; Achten, W.M.J. Different paths in social life cycle impact assessment (S-LCIA)—a classification of type II impact pathway approaches. Int. J. Life Cycle Assess. 2020, 25, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.C.; Arroja, L.; Capela, I. Carbon dioxide emissions from forest operations in Portuguese eucalypt and maritime pine stands. Scand. J. For. Res. 2007, 22, 422–432. [Google Scholar] [CrossRef]
- Dias, A.C.; Arroja, L. Environmental impacts of eucalypt and maritime pine wood production in Portugal. J. Clean. Prod. 2012, 37, 368–376. [Google Scholar] [CrossRef]
- Dias, A.C. Life cycle assessment of fuel chip production from eucalypt forest residues. Int. J. Life Cycle Assess. 2014, 19, 705–717. [Google Scholar] [CrossRef]
- Tarelho, L.A.C.; Teixeira, E.R.; Silva, D.F.R.; Modolo, R.C.E.; Labrincha, J.A.; Rocha, F. Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor. Energy 2015, 90, 387–402. [Google Scholar] [CrossRef]
- Pascual Peña, J.A. Bubbling fluidized beds: When to use this technology. In IFSA 2011, Industrial Fluidization South Africa, Proceedings of IFSA 2011, Johannesburg, South Africa, 16–17 November 2011; Luckos, A., den Hoed, P., Eds.; Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2011; pp. 57–66. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- UN Comtrade Database. Available online: https://comtrade.un.org (accessed on 24 February 2021).
- The World Bank, DataBank. Available online: https://databank.worldbank.org (accessed on 24 February 2021).
- International Labour Organization, ILOSTAT. Available online: https://ilostat.ilo.org (accessed on 24 February 2021).
- Martín-Gamboa, M.; Dias, L.C.; Quinteiro, P.; Freire, F.; Arroja, L.; Dias, A.C. Multi-criteria and life cycle assessment of wood-based bioenergy alternatives for residential heating: A sustainability analysis. Energies 2019, 12, 4391. [Google Scholar] [CrossRef] [Green Version]
- Ciroth, A.; Eisfeldt, F. PSILCA—A Product Social Impact Life Cycle Assessment Database; GreenDelta: Berlin, Germany, 2016. [Google Scholar]
- Eisfeldt, F. PSILCA—A Product Social Impact Life Cycle Assessment Database; GreenDelta: Berlin, Germany, 2017. [Google Scholar]
- Valente, A.; Iribarren, D.; Dufour, J. Comparative life cycle sustainability assessment of renewable and conventional hydrogen. Sci. Total Environ. 2021, 756, 144132. [Google Scholar] [CrossRef]
- GreenDelta, openLCA Software. Available online: https://openlca.org (accessed on 24 February 2021).
- Valente, A.; Iribarren, D.; Gálvez-Martos, J.L.; Dufour, J. Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: A life-cycle study with and without external costs. Sci. Total Environ. 2019, 650, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- UNEP/Life Cycle Initiative. LCA-Based Assessment of the Sustainable Development Goals; United Nations Environment Programme: Paris, France, 2020. [Google Scholar]
Feature | Units | Grate Furnace | Fluidised Bed |
---|---|---|---|
Feedstock | - | Eucalyptus logging residues | Eucalyptus logging residues |
LHV of feedstock (dry basis) 1 | MJ/t | 17.5 | 17.5 |
Nominal power | MWe | 12.5 | 25 |
Annual electricity production 2 | MWh | 62,478 | 85,387 |
Thermal efficiency 2 | % | 20 | 25 |
Typical temperature in the furnace 3 | °C | 900–1100 | 750–950 |
Typical gas velocity in the furnace 3 | m/s | 2.4–3.0 | 1.0–6.0 |
Typical combustion efficiency 3 | % | 94–97 | ~99 |
Eucalyptus chips consumption (dry basis) 2 | kg/kWh | 1.1 | 0.9 |
Personnel 4 | workers | 16 | 16 |
Annual working hours 4 | h/worker | 1840 | 1840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gamboa, M.; Quinteiro, P.; Dias, A.C.; Iribarren, D. Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems. Int. J. Environ. Res. Public Health 2021, 18, 4918. https://doi.org/10.3390/ijerph18094918
Martín-Gamboa M, Quinteiro P, Dias AC, Iribarren D. Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems. International Journal of Environmental Research and Public Health. 2021; 18(9):4918. https://doi.org/10.3390/ijerph18094918
Chicago/Turabian StyleMartín-Gamboa, Mario, Paula Quinteiro, Ana Cláudia Dias, and Diego Iribarren. 2021. "Comparative Social Life Cycle Assessment of Two Biomass-to-Electricity Systems" International Journal of Environmental Research and Public Health 18, no. 9: 4918. https://doi.org/10.3390/ijerph18094918