Sleep and Performance during a Preseason in Elite Rugby Union Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Research Design
2.3. Procedures
2.3.1. Sleep Monitoring
2.3.2. Sleep Questionnaires
2.3.3. Physical Assessments
Maximal Strength Testing
Barbell Bench Press Testing Protocol
Back Squat Testing Protocol
Weighted Chin up Testing Protocol
Speed Testing
Aerobic Fitness
Body Composition
Wellness Assessments
Training Load
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bishop, P.A.; Jones, E.; Woods, K.A. Recovery from training: A brief review. J. Strength Cond. Res. 2008, 22, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Venter, R.E. Perceptions of team athletes on the importance of recovery modalities. Eur. J. Sport Sci. 2014, 14, 69–76. [Google Scholar] [CrossRef]
- Gill, N.D.; Beaven, C.M.; Cook, C. Effectiveness of post-match recovery strategies in rugby players. Br. J. Sports Med. 2006, 40, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Vaile, J.; Halson, S.; Graham, S. Recovery review: Science vs. practice. J. Aust. Strength Cond. 2010, 10, 5–21. [Google Scholar]
- Tavares, F.; Healey, P.; Smith, T.B.; Driller, M. The usage and perceived effectiveness of different recovery modalities in amateur and elite rugby athletes. Perform. Enhanc. Health 2017, 5, 142–146. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Duffield, R.; Skorski, S.; Coutts, A.J.; Ross, J.; Meyer, T. Sleep and recovery in team sport: Current sleep-related issues facing professional team-sport athletes. Int. J. Sports Physiol. Perform. 2015, 10, 950–957. [Google Scholar] [CrossRef]
- Killer, S.C.; Svendsen, I.S.; Jeukendrup, A.E.; Gleeson, M. Evidence of disturbed sleep and mood state in well-trained athletes during short-term intensified training with and without a high carbohydrate nutritional intervention. J. Sports Sci. 2017, 35, 1402–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.R.; Rogers, G.G.; Driver, H.S. Effects of training volume on sleep, psychological, and selected physiological profiles of elite female swimmers. Med. Sci. Sports Exerc. 1997, 29, 688–693. [Google Scholar] [CrossRef]
- Thornton, H.R.; Duthie, G.M.; Pitchford, N.W.; Delaney, J.A.; Benton, D.T.; Dascombe, B.J. Effects of a 2-week high-intensity training camp on sleep activity of professional rugby league athletes. Int. J. Sports Physiol. Perform. 2017, 12, 928–933. [Google Scholar] [CrossRef]
- Cook, C.; Beaven, C.M.; Kilduff, L.P.; Drawer, S. Acute caffeine ingestion’s increase of voluntarily chosen resistance-training load after limited sleep. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 157–164. [Google Scholar] [CrossRef]
- Halson, S.L. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 2014, 44, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Argus, C.K.; Gill, N.; Keogh, J.; Hopkins, W.G.; Beaven, C.M. Effects of a short-term pre-season training programme on the body composition and anaerobic performance of professional rugby union players. J. Sports Sci. 2010, 28, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.; Pyne, D.; Hooper, S. Applied physiology and game analysis of rugby union. Sports Med. 2003, 33, 973–991. [Google Scholar] [CrossRef] [PubMed]
- Tavares, F.; Beaven, M.; Teles, J.; Baker, D.; Healey, P.; Smith, T.B.; Driller, M. Effects of chronic cold water immersion in elite rugby players. Int. J. Sports Physiol. Perform. 2019, 14, 156–162. [Google Scholar] [CrossRef]
- Thornton, H.R.; Delaney, J.A.; Duthie, G.M.; Dascombe, B.J.; Heidi Thornton, M.R. Effects of pre-season training on the sleep characteristics of professional rugby league players. Int. J. Sports Physiol. Perform. 2018, 13, 176–182. [Google Scholar] [CrossRef]
- Dunican, I.C.; Walsh, J.; Higgins, C.C.; Jones, M.J.; Maddison, K.; Caldwell, J.A.; David, H.; Eastwood, P.R. Prevalence of sleep disorders and sleep problems in an elite super rugby union team. J. Sports Sci. 2019, 37, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Dunican, I.C.; Eastwood, P.R. Sleep is an important factor when considering rugby union player load. Br. J. Sports Med. 2017, 51, 1640. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.J.; Morgan, W.P.; Raglin, J.S. Psychobiologic effects of 3D of increased training in female and male swimmers. Med. Sci. Sports Exerc. 1991, 23, 1055–1061. [Google Scholar]
- Dattilo, M.; Antunes, H.K.M.; Medeiros, A.; Mônico Neto, M.; Souza, H.S.; Tufik, S.; De Mello, M.T. Sleep and muscle recovery: Endocrinological and molecular basis for a new and promising hypothesis. Med. Hypotheses 2011, 77, 220–222. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Beaven, M.C.; Cook, C.J.; Gill, N.D. Significant strength gains observed in rugby players after specific resistance exercise protocols based on individual salivary testosterone responses. J. Strength Cond. Res. 2008, 22, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef] [PubMed]
- Swinbourne, R.; Miller, J.; Smart, D.; Dulson, D.; Gill, N. The effects of sleep extension on sleep, performance, immunity and physical stress in rugby players. Sports 2018, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Walsh, N.P.; Halson, S.L.; Sargent, C.; Roach, G.D.; Nédélec, M.; Gupta, L.; Leeder, J.; Fullagar, H.H.; Coutts, A.J.; Edwards, B.J.; et al. Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. Br. J. Sports Med. 2020, 55, 356–368. [Google Scholar] [CrossRef]
- Watson, N.F.; Badr, S.M.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Joint consensus statement of the american academy of sleep medicine and sleep research society on the recommended amount of sleep for a healthy adult: Methodology and discussion. J. Clin. Sleep Med. 2015, 11, 931–952. [Google Scholar] [CrossRef]
- Driller, M.W.; O’Donnell, S.; Tavares, F. What wrist should you wear your actigraphy device on? Analysis of dominant vs. non-dominant wrist actigraphy for measuring sleep in healthy adults. Sleep Sci. 2017, 10, 132–135. [Google Scholar] [CrossRef] [Green Version]
- Dunican, I.C.; Murray, K.; Slater, J.A.; Maddison, K.J.; Jones, M.J.; Dawson, B.; Straker, L.M.; Caldwell, J.A.; Halson, S.L.; Eastwood, P.R. Laboratory and home comparison of wrist-activity monitors and polysomnography in middle-aged adults. Sleep Biol. Rhythm. 2018, 16, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Driller, M.; McQuillan, J.; O’Donnell, S. Inter-device reliability of an automatic-scoring actigraph for measuring sleep in healthy adults. Sleep Sci. 2016, 9, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Driller, M.W.; Mah, C.D.; Halson, S.L. Development of the athlete sleep behavior questionnaire: A tool for identifying maladaptive sleep practices in elite athletes. Sleep Sci. 2018, 11, 37–44. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1988, 28, 193–213. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of low-vs-high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Coyne, J.O.C.; Tran, T.T.; Secomb, J.L.; Lundgren, L.; Farley, O.R.L.; Newton, R.U.; Sheppard, J.M. Reliability of pull up & dip maximal strength tests. J. Aust. Strength Cond. 2015, 23, 21–27. [Google Scholar]
- Brzycki, M. Predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- LeSuer, D.A.; McCormick, J.H.; Mayhew, J.L.; Wasserstein, R.L.; Arnold, M.D. The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat and deadlift. J. Strength Cond. Res. 1997, 11, 211–213. [Google Scholar]
- Duthie, G.M.; Pyne, D.B.; Ross, A.A.; Livingstone, S.G.; Hooper, S.L. The reliability of ten-meter sprint time using different starting techniques. J. Strength Cond. Res. 2006, 20, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Nance, S. The relation between running speed and measures of strength and power in professional rugby league players. J. Strength Cond. Res. 1999, 13, 230–235. [Google Scholar]
- Deuchrass, R.W.; Smith, H.K.; Elliot, C.E.; Lizamore, C.E.; Hamlin, M.J. The 1.2 km shuttle run test: Reliability and comparison with the Yo-Yo intermittent recovery level 1 test in young elite rugby union players. J. Aust. Strength Cond. Assoc. 2019, 27, 14–20. [Google Scholar]
- Norton, K.; Whittingham, N.; Carter, L.; Kerr, D.; Gore, C.; Marfell-Jones, M. Measurement Techniques in Anthropometry; University of New South Wales Press: Sydney, Australia, 1996. [Google Scholar]
- Hooper, S.L.; Mackinnon, L.T. Monitoring overtraining in athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; Hakim, A.D. Wrist actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; The New York Academy of Sciences: New York, NY, USA, 1988; Volume 2. [Google Scholar]
- Batterham, A.M.; Hopkins, W.G. Making Meaningful Inferences about Magnitudes. Int. J. Sports Physiol. Perform. 2006, 1, 50–57. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef]
- Schwartz, J.; Simon, R.D. Sleep extension improves serving accuracy: A study with college varsity tennis players. Physiol. Behav. 2015, 151, 541–544. [Google Scholar] [CrossRef]
- Vanhelder, T.; Radomski, M.W. Sleep deprivation and the effect on exercise performance. Sports Med. 1989, 7, 235–247. [Google Scholar] [CrossRef]
- Mah, C.D.; Mah, K.E.; Kezirian, E.J.; Dement, W.C. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 2011, 34, 943–950. [Google Scholar] [CrossRef]
- Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow wave sleep and rem sleep and relationship with growth hormone and cortisol levels in healthy men. J. Am. Med. Assoc. 2000, 7, 861–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuneo, R.C.; Salomon, F.; Hesp, R.; Sönksen, P.H. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance. J. Appl Physiol 1991, 70, 695–700. [Google Scholar] [CrossRef]
- Widdowson, W.M.; Gibney, J. The effect of growth hormone replacement on exercise capacity in patients with GH deficiency: A meta analysis. J. Clin. Endocrinol. Metab. 2008, 93, 4413–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdowson, W.M.; Healy, M.L.; Sönksen, P.H.; Gibney, J. The physiology of growth hormone and sport. Growth Horm. IGF Res. 2009, 19, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.O.L.; Vahl, N.; Dall, R.; Christiansen, J.S. Resting metabolic rate in healthy adults: Relation to growth hormone status and leptin levels. Metabolism 1998, 47, 1134–1139. [Google Scholar] [CrossRef]
- Benedict, C.; Hallschmid, M.; Lassen, A.; Mahnke, C.; Schultes, B.; Schiöth, H.B.; Born, J.; Lange, T. Acute sleep deprivation reduces energy expenditure in healthy men. Am. J. Clin. Nutr. 2011, 93, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nader, G.A. Concurrent strength and endurance training: From molecules to man. Am. Coll. Sports Med. 2006, 38, 1965–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.C.; Loenneke, J.P.; Anderson, J.C. Concurrent training: A meta-analysis examining interference of aerobic and resistance exercises. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.C. Minimising the interference effect during programmes of concurrent strength and endurance training. Part 2: Programming recommendations. UK Strength Cond. Assoc. 2014, 32, 15–22. [Google Scholar]
- Bonnet, M.H. Sleep restoration as a function of periodic awakening, movement, or electroencephalographic change. Sleep 1987, 10, 364–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Body Weight | Skinfolds | 1RM Squat | 1RM Bench | 1RM Chin-Up | Bronco | 5 m Speed | 10 m Speed | Fatigue | Muscle Soreness | Stress | Sleep Quality (Self-Reported) | Wellness | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Sleep time | −0.227 S | −0.237 S | 0.068 | −0.071 | 0.206 S | −0.097 | 0.015 | 0.202 S | 0.033 | −0.027 | 0.092 | −0.125 S | −0.007 |
Sleep Efficiency | −0.149 S | −0.156 S | −0.058 | 0.133 S | 0.121 S | 0.215 S | 0.388 M | 0.267 S | −0.305 M | 0.302 M | 0.136 S | −0.030 | 0.197 S |
Sleep Latency | −0.037 | −0.102 S | 0.010 | −0.053 | −0.058 | −0.108 S | −0.349 M | −0.393 M | −0.109 S | −0.151 S | −0.199 S | −0.051 | −0.149 S |
Wake Episodes | 0.128 S | 0.179 S | 0.114 S | −0.007 | −0.137 S | −0.165 S | 0.049 | −0.049 | −0.217 S | −0.227 S | 0.136 S | −0.068 | −0.096 |
Wake after sleep onset | 0.108 S | 0.184 S | 0.051 | −0.024 | −0.101 S | −0.201 S | 0.170 S | 0.071 | −0.229 S | −0.239 S | 0.125 S | 0.038 | −0.074 |
Sleep Duration Nightly (h:min) | Sleep Duration Week 1 (h:min) | Sleep Duration Week 2 (h:min) | Sleep Duration Week 3 (h:min) | Sleep Duration Overall (h:min) | |
---|---|---|---|---|---|
HIGH | 7:49 ± 0:15 | 63:42 ± 4:25 | 54:06 ± 1:40 | 54:03 ± 3:28 | 171:52 ± 6:40 |
LOW | 6:55 ± 0:22 | 56:34 ± 5:15 | 48:01 ± 3:33 | 48:59 ± 2:41 | 152:36 ± 8:12 |
HIGH–LOW | 0:54 ± 0:06 L | 7:08 ± 3:42 L | 6:05 ± 2:08 L | 6:04 ± 2:23 L | 19:16 ± 5:40 L |
Measure | Condition | Raw Change Week 1 to 3 (Mean ± CI) | p-Value | Effect Size (d) ± 95% CI | Raw Change Week 1 to 5 (Mean ± CI) | p-Value | Effect Size (d) ± 95% CI |
---|---|---|---|---|---|---|---|
Skinfold (mm) | HIGH LOW | −8.9 ± 5.9 −6.0 ± 4.0 | 0.007 * | 0.58 ± 0.65 moderate | −11.4 ± 8.0 −6.0 ± 3.6 | 0.020 * | 0.92 ± 0.70 large |
Bodyweight (kg) | HIGH LOW | 0.4 ± 1.6 −0.5 ± 1.2 | 0.091 | −0.70 ± 0.72 moderate | 0.3 ± 1.7 −0.4 ± 1.2 | 0.158 | −0.53 ± 0.74 unclear |
Bronco (sec) | HIGH LOW | −5.4 ± 3.02 −1.5 ± 3.11 | 0.022 * | 1.25 ± 0.81 large | −7.3 ± 5.9 −3.0 ± 9.2 | 0.277 | 0.40 ± 0.72 unclear |
1RM Squat (kg) | HIGH LOW | −5.1 ± 10.0 −5.0 ± 10.0 | 0.750 | −0.15 ± 0.84 unclear | - | - | - |
1RM Bench Press (kg) | HIGH LOW | −6.1 ± 4.8 −3.3 ± 6.9 | 0.284 | 0.48 ± 0.75 unclear | - | - | - |
1RM Chin-Up (kg) | HIGH LOW | −6.1 ± 6.6 −5.6 ± 7.0 | 0.853 | 0.08 ± 0.74 unclear | - | - | - |
5 m Speed (sec) | HIGH LOW | −0.01 ± 0.03 0.01 ± 0.03 | 0.799 | 0.64 ± 0.98 unclear | - | - | - |
10 m Speed (sec) | HIGH LOW | 0.03 ± 0.05 0.02 ± 0.02 | 0.400 | −0.48 ±1.03 unclear | - | - | - |
Measure | Condition | Pre (Mean ± SD) | Post (Mean ± SD) | p-Value | Effect Size (d) ± 95% CI |
---|---|---|---|---|---|
ASBQ | HIGH LOW | 44.5 ± 5.7 41.1 ± 4.9 | 41.0 ± 5.0 41.8 ± 5.1 | 0.022 * 0.509 | −0.63 ±0.76, moderate 0.13 ±0.73, unclear |
PSQI | HIGH LOW | 5.7 ± 2.9 5.0 ± 1.8 | 5.5 ± 2.4 5.5 ± 2.0 | 0.671 0.135 | −0.08 ±0.75, unclear 0.26 ±0.80, unclear |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teece, A.R.; Argus, C.K.; Gill, N.; Beaven, M.; Dunican, I.C.; Driller, M.W. Sleep and Performance during a Preseason in Elite Rugby Union Athletes. Int. J. Environ. Res. Public Health 2021, 18, 4612. https://doi.org/10.3390/ijerph18094612
Teece AR, Argus CK, Gill N, Beaven M, Dunican IC, Driller MW. Sleep and Performance during a Preseason in Elite Rugby Union Athletes. International Journal of Environmental Research and Public Health. 2021; 18(9):4612. https://doi.org/10.3390/ijerph18094612
Chicago/Turabian StyleTeece, Angus R., Christos K. Argus, Nicholas Gill, Martyn Beaven, Ian C. Dunican, and Matthew W. Driller. 2021. "Sleep and Performance during a Preseason in Elite Rugby Union Athletes" International Journal of Environmental Research and Public Health 18, no. 9: 4612. https://doi.org/10.3390/ijerph18094612
APA StyleTeece, A. R., Argus, C. K., Gill, N., Beaven, M., Dunican, I. C., & Driller, M. W. (2021). Sleep and Performance during a Preseason in Elite Rugby Union Athletes. International Journal of Environmental Research and Public Health, 18(9), 4612. https://doi.org/10.3390/ijerph18094612