Effect of an Endurance and Strength Mixed Circuit Training on Regional Fat Thickness: The Quest for the “Spot Reduction”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurements
- Upper abdomen and Lower abdomen: subjects were positioned supine and asked to inhale and then to stop breathing at mid-exhalation to take the 3 photographs without movement of the abdominal wall;
- Brachioradialis: subjects were positioned supine, arms at the sides, right-hand with thumb up;
- Front thigh: subjects were positioned supine and asked to stay relaxed;
- Spinal erectors: subjects were prone, with the chin resting on the edge of the bed and arms extended at the sides;
- Distal triceps: subjects were prone, arms at the sides with right palm upwards;
- Lateral thigh: subject in lateral decubitus on the left side and legs at a 90° angle at the knee;
- Medial calf: subject in lateral decubitus on the right side, right leg with a 90° angle at the knee.
2.3. Training Protocols
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walker, G.E.; Marzullo, P.; Ricotti, R.; Bona, G.; Prodam, F. The pathophysiology of abdominal adipose tissue depots in health and disease. Horm. Mol. Biol. Clin. Investig. 2014, 19, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Smith, S.R.; Lovejoy, J.C.; Greenway, F.; Ryan, D.; de Jonge, L.; de la Bretonne, J.; Volafova, J.; Bray, G.A. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001, 50, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Kivimaki, M.; Kuosma, E.; Ferrie, J.E.; Luukkonen, R.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Brunner, E.J.; Fransson, E.; Goldberg, M.; et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health 2017, 2, e277–e285. [Google Scholar] [CrossRef] [Green Version]
- Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration; Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 2014, 383, 970–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.D.; Haymond, M.W.; Rizza, R.A.; Cryer, P.E.; Miles, J.M. Influence of body fat distribution on free fatty acid metabolism in obesity. J. Clin. Investig. 1989, 83, 1168–1173. [Google Scholar] [CrossRef]
- Alligier, M.; Meugnier, E.; Debard, C.; Lambert-Porcheron, S.; Chanseaume, E.; Sothier, M.; Loizon, E.; Hssain, A.A.; Brozek, J.; Scoazec, J.Y.; et al. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J. Clin. Endocrinol. Metab. 2012, 97, E183–E192. [Google Scholar] [CrossRef] [Green Version]
- Vogel, M.A.A.; Wang, P.; Bouwman, F.G.; Hoebers, N.; Blaak, E.E.; Renes, J.; Mariman, E.C.; Goossens, G.H. A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci. Rep. 2019, 9, 4202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosy-Westphal, A.; Geisler, C.; Onur, S.; Korth, O.; Selberg, O.; Schrezenmeir, J.; Muller, M.J. Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int. J. Obes. 2006, 30, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, S.; Martinez, E.E.; Aguilar, F.G.; Kim, K.Y.; Peng, J.; Sha, J.; Irvin, M.R.; Lewis, C.E.; Hunt, S.C.; Arnett, D.K.; et al. Association of Central Adiposity With Adverse Cardiac Mechanics: Findings From the Hypertension Genetic Epidemiology Network Study. Circ. Cardiovasc. Imaging 2016, 9, e004396. [Google Scholar] [CrossRef] [Green Version]
- Seidell, J.C.; Perusse, L.; Despres, J.P.; Bouchard, C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: The Quebec Family Study. Am. J. Clin. Nutr. 2001, 74, 315–321. [Google Scholar] [CrossRef]
- Snijder, M.B.; Dekker, J.M.; Visser, M.; Bouter, L.M.; Stehouwer, C.D.; Kostense, P.J.; Yudkin, J.S.; Heine, R.J.; Nijpels, G.; Seidell, J.C. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: The Hoorn Study. Am. J. Clin. Nutr. 2003, 77, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Swift, D.L.; McGee, J.E.; Earnest, C.P.; Carlisle, E.; Nygard, M.; Johannsen, N.M. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog. Cardiovasc. Dis. 2018, 61, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Elagizi, A.; Kachur, S.; Carbone, S.; Lavie, C.J.; Blair, S.N. A Review of Obesity, Physical Activity, and Cardiovascular Disease. Curr. Obes. Rep. 2020, 9, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K.; American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Cureton, T. The Effect of Gymnastics upon Boys; Unpublished Paper; College Coaches Gymnastic Clinic: Sarasota, FL, USA, 1954. [Google Scholar]
- Yuhasz, M.S. The Effects of Sports Training on Body Fat in Man with Predictions of Optimal Body Weight; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1962. [Google Scholar]
- Kireilis, R.W.; Cureton, T.K. The relationships of external fat to physical education activities and fitness tests. Res. Q. Am. Assoc. Healthphys. Educ. Recreat. 1947, 18, 123–134. [Google Scholar] [CrossRef]
- Stallknecht, B.; Dela, F.; Helge, J.W. Are blood flow and lipolysis in subcutaneous adipose tissue influenced by contractions in adjacent muscles in humans? Am. J. Physiol. Endocrinol. Metab. 2007, 292, E394–E399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, D.R. Changes in Waistline and Abdominal Girth and Subcutaneous Fat Following Isometric Exercises. Res. Q. 1965, 36, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Noland, M.; Kearney, J.T. Anthropometric and densitometric responses of women to specific and general exercise. Res. Q. 1978, 49, 322–328. [Google Scholar] [CrossRef]
- Olson, A.L.; Edelstein, E. Spot reduction of subcutaneous adipose tissue. Res. Q. 1968, 39, 647–652. [Google Scholar] [CrossRef]
- Gwinup, G.; Chelvam, R.; Steinberg, T. Thickness of subcutaneous fat and activity of underlying muscles. Ann. Intern. Med. 1971, 74, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Krotkiewski, M.; Aniansson, A.; Grimby, G.; Bjorntorp, P.; Sjostrom, L. The effect of unilateral isokinetic strength training on local adipose and muscle tissue morphology, thickness, and enzymes. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Roby, F.B. Effect of exercise on regional subcutaneous fat accumulations. Res. Q. Am. Assoc. Healthphys. Educ. Recreat. 1962, 33, 273–278. [Google Scholar] [CrossRef]
- Katch, F.I.; Clarkson, P.M.; Kroll, W.; McBride, T.; Wilcox, A. Effects of sit up exercise training on adipose cell size and adiposity. Res. Q. Exerc. Sport 1984, 55, 242–247. [Google Scholar] [CrossRef]
- Kostek, M.A.; Pescatello, L.S.; Seip, R.L.; Angelopoulos, T.J.; Clarkson, P.M.; Gordon, P.M.; Moyna, N.M.; Visich, P.S.; Zoeller, R.F.; Thompson, P.D.; et al. Subcutaneous fat alterations resulting from an upper-body resistance training program. Med. Sci. Sports Exerc. 2007, 39, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.; Horn, M.; Furhapter-Rieger, A.; Kainz, P.; Kropfl, J.M.; Maughan, R.J.; Ahammer, H. Body composition in sport: A comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement. Br. J. Sports Med. 2013, 47, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Bellisari, A.; Roche, A.F.; Siervogel, R.M. Reliability of B-mode ultrasonic measurements of subcutaneous adipose tissue and intra-abdominal depth: Comparisons with skinfold thicknesses. Int. J. Obes. Relat. Metab. Disord. 1993, 17, 475–480. [Google Scholar]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Scotto di Palumbo, A.; Guerra, E.; Orlandi, C.; Bazzucchi, I.; Sacchetti, M. Effect of combined resistance and endurance exercise training on regional fat loss. J. Sports Med. Phys. Fit. 2017, 57, 794–801. [Google Scholar] [CrossRef]
- Paoli, A.; Pacelli, F.; Bargossi, A.M.; Marcolin, G.; Guzzinati, S.; Neri, M.; Bianco, A.; Palma, A. Effects of three distinct protocols of fitness training on body composition, strength and blood lactate. J. Sports Med. Phys. Fit. 2010, 50, 43–51. [Google Scholar]
- Paoli, A.; Pacelli, Q.F.; Moro, T.; Marcolin, G.; Neri, M.; Battaglia, G.; Sergi, G.; Bolzetta, F.; Bianco, A. Effects of high-intensity circuit training, low-intensity circuit training and endurance training on blood pressure and lipoproteins in middle-aged overweight men. Lipids Health Dis. 2013, 12, 131. [Google Scholar] [CrossRef] [Green Version]
- Dussini, N.; Martino, R.; Neri, M.; Paoli, A.; Velussi, C. Multifactorial analysis of circuit-training induced regional fat reduction. Pflìugers Arch. Eur. J. Physiol. 1994, 426, R186. [Google Scholar] [CrossRef]
- Durnin, J.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef]
- Muller, W.; Horn, M.; Furhapter-Rieger, A.; Kainz, P.; Kropfl, J.M.; Ackland, T.R.; Lohman, T.G.; Maughan, R.J.; Meyer, N.L.; Sundgot-Borgen, J.; et al. Body composition in sport: Interobserver reliability of a novel ultrasound measure of subcutaneous fat tissue. Br. J. Sports Med. 2013, 47, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Chirita-Emandi, A.; Dobrescu, A.; Papa, M.; Puiu, M. Reliability of Measuring Subcutaneous Fat Tissue Thickness Using Ultrasound in Non-Athletic Young Adults. Maedica 2015, 10, 204–209. [Google Scholar]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. Tech. Meas. Body Compos. 1961, 61, 223–244. [Google Scholar]
- Ramirez, M.E. Measurement of subcutaneous adipose tissue using ultrasound images. Am. J. Phys. Anthr. 1992, 89, 347–357. [Google Scholar] [CrossRef]
- Checkley, E. A Natural Material Method of Physical Education Training Making Muscle and Reducing Flesh without Dieting or Apparatus; William C. Bryant and Co: New York, NY, USA, 1895. [Google Scholar]
- Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007, 27, 79–101. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, K.; Sarkadi-Nagy, E.; Duncan, R.E.; Ahmadian, M.; Sul, H.S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1–G4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustig, J.; Strauss, B. Nutritional Assessment. Anthropometry and Clinical Examination; Encyclopedia of Foood Sciences and Nutrition; Academic Press: Oxford, UK, 2003. [Google Scholar]
- Schade, M.; Helledrandt, F.; Waterland, J.C.; Carns, M.L. Spot reducing in overweight college women: Its influence on fat distribution as determined by photography. Res. Q. Am. Assoc. Healthphys. Educ. Recreat. 1962, 33, 461–471. [Google Scholar] [CrossRef]
SR (N = 7) | RT (N = 7) | Difference between Group (p-Value) | |
---|---|---|---|
Age (y) | 23.29 ± 1.89 | 26.57 ± 9.14 | 0.37 |
Weight (kg) | 69.24 ± 6.90 | 75.93 ± 12.47 | 0.24 |
Height (cm) | 170.64 ± 5.73 | 175.57 ± 12.02 | 0.35 |
BMI (kg/m2) | 23.78 ± 2.11 | 24.67 ± 3.54 | 0.58 |
Body fat (%) | 24.69 ± 10.32 | 28.03 ± 7.44 | 0.50 |
SR | RT | ||||
---|---|---|---|---|---|
Exercise | Set × Reps/Time | Rest | Exercise | Set × Reps | Rest |
Treadmill | 5 min | - | Treadmill | 5 min | - |
Crunches | 20 reps | - | Bike | 5 min | - |
Dumbbell overhead extension | 15 reps | - | Step | 5 min | - |
Bike | 5 min | - | Treadmill | 5 min | - |
Crunches | 20 reps | - | Bike | 5 min | - |
Dumbbell overhead extension | 15 reps | - | Dumbbell bench press | 3 × 10 | 1 min |
Step | 5 min | - | Lat pulldown | 3 × 10 | 1 min |
Crunches | 20 reps | - | Shoulder press | 3 × 10 | 1 min |
Dumbbell overhead extension | 15 reps | - | Arm curl | 3 × 12 | 45 s |
Treadmill | 5 min | - | Dumbbell overhead extension | 4 × 15 | 45 s |
Crunches | 20 reps | - | Leg press | 3 × 10 | 1 min 30 s |
Dumbbell overhead extension | 15 reps | - | Leg extension | 3 × 12 | 1 min |
Bike | 5 min | - | Crunches | 4 × 20 | 45 s |
Dumbbell bench press | 3 × 10 | 1 min | - | - | - |
Lat pulldown | 3 × 10 | 1 min | - | - | - |
Shoulder press | 3 × 10 | 1 min | - | - | - |
Arm curl | 3 × 12 | 45 s | - | - | - |
Leg press | 3 × 10 | 1 min 30 s | - | - | - |
Leg extension | 3 × 12 | 1 min | - | - | - |
SR (N = 7) | RT (N = 7) | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Bicipital (mm) | 11.66 ± 9.04 | 9.68 ± 5.09 | 8.50 ± 4.85 | 9.02 ± 6.14 |
Triceps (mm) | 18.75 ± 9.31 | 18.65 ± 9.31 | 19.87 ± 5.36 | 19.81 ± 5.14 |
Suprailiac (mm) § | 20.43 ± 6.01 | 17.99 ± 6.37 * | 19.33 ± 6.39 | 18.85 ± 6.36 |
Subscapularis (mm) § | 16.94 ± 5.74 | 15.36 ± 4.25 * | 18.25 ± 6.47 | 17.17 ± 5.61 |
Body fat (%) § | 28.83 ± 8.92 | 27.52 ± 8.97 * | 27.74 ± 6.81 | 27.49 ± 6.91 |
SR (N = 7) | RT (N = 7) | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Upper abdomen (mm) § | 15.09 ± 6.08 | 12.35 ± 5.65 * | 19.43 ± 10.34 | 18.13 ± 10.11 |
Lower abdomen (mm) | 17.88 ± 7.44 | 17.30 ± 7.06 | 22.99 ± 9.23 | 22.33 ± 8.07 |
Spinal erectors (mm) § | 9.96 ± 6.25 | 7.79 ± 4.83 * | 10.77 ± 2.83 | 9.31 ± 3.28 |
Distal triceps (mm) | 5.40 ± 3.95 | 6.21 ± 4.71 | 5.72 ± 2.13 | 5.19 ± 2.05 |
Brachioradialis (mm) | 2.72 ± 1.37 | 3.24 ± 2.59 | 3.59 ± 2.12 | 3.66 ± 2.00 |
Front thigh (mm) § | 8.46 ± 4.35 | 9.40 ± 5.17 * | 11.56 ± 4.26 | 12.40 ± 3.29 |
Medial calf (mm) | 4.87 ± 3.17 | 4.73 ± 2.90 | 5.90 ± 2.99 | 6.05 ± 2.49 |
Lateral thigh (mm) | 18.44 ± 9.09 | 15.64 ± 7.08 | 24.10 ± 11.97 | 23.92 ± 11.08 |
SR (N = 7) | RT (N = 7) | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
Total body water (L) | 38.15 ± 6.09 | 36.74 ± 5.33 | 39.22 ± 6.22 | 38.36 ± 5.52 |
Extracellular water (L) | 14.76 ± 1.97 | 13.93 ± 2.49 | 14.51 ± 2.76 | 14.41 ± 1.76 |
Intracellular water (L) § | 23.38 ± 4.39 | 22.82 ± 3.79 | 24.71 ± 4.10 | 22.65 ± 3.63 * |
Fat mass (kg) | 17.13 ± 7.82 | 16.26 ± 6.57 | 21.42 ± 7.43 | 20.46 ± 8.12 |
Fat-free mass (kg) | 52.15 ± 8.64 | 51.17 ± 7.27 | 54.58 ± 9.66 | 54.39 ± 9.45 |
Body cellular mass (kg) | 28.85 ± 6.04 | 28.15 ± 5.53 | 30.91 ± 8.26 | 29.40 ± 6.85 |
Phase angle (°) | 5.94 ± 0.56 | 5.91 ± 0.57 | 5.94 ± 1.17 | 5.66 ± 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoli, A.; Casolo, A.; Saoncella, M.; Bertaggia, C.; Fantin, M.; Bianco, A.; Marcolin, G.; Moro, T. Effect of an Endurance and Strength Mixed Circuit Training on Regional Fat Thickness: The Quest for the “Spot Reduction”. Int. J. Environ. Res. Public Health 2021, 18, 3845. https://doi.org/10.3390/ijerph18073845
Paoli A, Casolo A, Saoncella M, Bertaggia C, Fantin M, Bianco A, Marcolin G, Moro T. Effect of an Endurance and Strength Mixed Circuit Training on Regional Fat Thickness: The Quest for the “Spot Reduction”. International Journal of Environmental Research and Public Health. 2021; 18(7):3845. https://doi.org/10.3390/ijerph18073845
Chicago/Turabian StylePaoli, Antonio, Andrea Casolo, Matteo Saoncella, Carlo Bertaggia, Marco Fantin, Antonino Bianco, Giuseppe Marcolin, and Tatiana Moro. 2021. "Effect of an Endurance and Strength Mixed Circuit Training on Regional Fat Thickness: The Quest for the “Spot Reduction”" International Journal of Environmental Research and Public Health 18, no. 7: 3845. https://doi.org/10.3390/ijerph18073845
APA StylePaoli, A., Casolo, A., Saoncella, M., Bertaggia, C., Fantin, M., Bianco, A., Marcolin, G., & Moro, T. (2021). Effect of an Endurance and Strength Mixed Circuit Training on Regional Fat Thickness: The Quest for the “Spot Reduction”. International Journal of Environmental Research and Public Health, 18(7), 3845. https://doi.org/10.3390/ijerph18073845