Maternal Prenatal Hair Cortisol Is Associated with Child Wheeze among Mothers and Infants with Tobacco Smoke Exposure and Who Face High Socioeconomic Adversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Maternal Cortisol
2.1.2. Maternal Smoking and Childhood Wheeze
2.1.3. Socioeconomic, Demographic, Correlates of Stress, and Health Factors
2.2. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zahran, H.S.; Bailey, C.M.; Damon, S.A.; Garbe, P.L.; Breysse, P.N. Vital signs: Asthma in children—United States, 2001–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 149. [Google Scholar] [CrossRef] [Green Version]
- Kwong, C.G.; Bacharier, L.B. Phenotypes of wheezing and asthma in preschool children. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Van De Loo, K.F.; Van Gelder, M.M.; Roukema, J.; Roeleveld, N.; Merkus, P.J.; Verhaak, C.M. Prenatal maternal psychological stress and childhood asthma and wheezing: A meta-analysis. Eur. Respir. J. 2016, 47, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.-A.; Chenoweth, M.J.; Tyndale, R.F. Pharmacogenetics of Nicotine and Associated Smoking Behaviors. Neuropharmacol. Nicotine Depend. 2015, 23, 37–86. [Google Scholar] [CrossRef]
- Curtin, S.C.; Matthews, T.J. Smoking Prevalence and Cessation Before and During Pregnancy: Data from the Birth Certificate, 2014. Natl. Vital Stat. Rep. 2016, 65, 1–14. [Google Scholar] [PubMed]
- Lannerö, E.; Wickman, M.; Pershagen, G.; Nordvall, L. Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir. Res. 2006, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, C.T.; Spindel, E.R. Pulmonary Effects of Maternal Smoking on the Fetus and Child: Effects on Lung Development, Respiratory Morbidities, and Life Long Lung Health. Paediatr. Respir. Rev. 2017, 21, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Burke, H.; Leonardi-Bee, J.; Hashim, A.; Pine-Abata, H.; Chen, Y.; Cook, D.G.; Britton, J.; McKeever, T.M. Prenatal and Passive Smoke Exposure and Incidence of Asthma and Wheeze: Systematic Review and Meta-analysis. Pediatrics 2012, 129, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, J.; Dockery, D.W.; Speizer, F.E. Maternal Smoking during Pregnancy as a Predictor of Lung Function in Children. Am. J. Epidemiol. 1994, 139, 1139–1152. [Google Scholar] [CrossRef]
- Dietz, P.; England, L.J.; Shapiro-Mendoza, C.K.; Tong, V.T.; Farr, S.L.; Callaghan, W.M. Infant Morbidity and Mortality Attributable to Prenatal Smoking in the U.S. Am. J. Prev. Med. 2010, 39, 45–52. [Google Scholar] [CrossRef]
- Dekker, H.T.D.; Der Voort, A.M.S.-V.; De Jongste, J.C.; Anessi-Maesano, I.; Arshad, S.H.; Barros, H.; Beardsmore, C.S.; Bisgaard, H.; Phar, S.C.; Craig, L.; et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 2016, 137, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Kondracki, A.J. Prevalence and patterns of cigarette smoking before and during early and late pregnancy according to maternal characteristics: The first national data based on the 2003 birth certificate revision, United States, 2016. Reprod. Health 2019, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- General, S. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; US Department of Health and Human Services: Rockville, MD, USA, 2014. [Google Scholar]
- Yang, I.; Hall, L. Factors related to prenatal smoking among socioeconomically disadvantaged women. Women Health 2019, 59, 1026–1074. [Google Scholar] [CrossRef]
- Masho, S.; Bishop, D.L.; Keyser-Marcus, L.; Varner, S.B.; White, S.; Svikis, D. Least explored factors associated with prenatal smoking. Matern. Child Health J. 2013, 17, 1167–1174. [Google Scholar] [CrossRef] [Green Version]
- Adams, E.K.; Markowitz, S.; Dietz, P.M.; Tong, V.T. Expansion of Medicaid Covered Smoking Cessation Services: Maternal Smoking and Birth Outcomes. Medicare Medicaid Res. Rev. 2013, 3. [Google Scholar] [CrossRef]
- Adynski, H.; Zimmer, C.; Thorp, J.; Santos, H. Predictors of psychological distress in low-income mothers over the first postpartum year. Res. Nurs. Health 2019, 42, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.R.; Farr, S.L.; Howards, P.P. Stressful Life Events Experienced by Women in the Year Before Their Infants’ Births—United States, 2000–2010. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 247–251. [Google Scholar] [PubMed]
- Flanigan, C.; Sheikh, A.; DunnGalvin, A.; Brew, B.K.; Almqvist, C.; Nwaru, B.I. Prenatal maternal psychosocial stress and offspring’s asthma and allergic disease: A systematic review and meta-analysis. Clin. Exp. Allergy 2018, 48, 403–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, D.T.; Green, A.S.; Limesand, S.W. Catecholamines Mediate Multiple Fetal Adaptations during Placental Insufficiency that Contribute to Intrauterine Growth Restriction: Lessons from Hyperthermic Sheep. J. Pregnancy 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sternthal, M.J.; Coull, B.A.; Chiu, Y.-H.M.; Cohen, S.; Wright, R.J. Associations among maternal childhood socioeconomic status, cord blood IgE levels, and repeated wheeze in urban children. J. Allergy Clin. Immunol. 2011, 128, 337–345.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, R.J.; Fisher, K.; Chiu, Y.-H.M.; Wright, R.O.; Fein, R.; Cohen, S.; Coull, B.A. Disrupted Prenatal Maternal Cortisol, Maternal Obesity, and Childhood Wheeze. Insights into Prenatal Programming. Am. J. Respir. Crit. Care Med. 2013, 187, 1186–1193. [Google Scholar] [CrossRef] [Green Version]
- De Vries, A.; Reynolds, R.M.; Seckl, J.R.; Van Der Wal, M.; Bonsel, G.J.; Vrijkotte, T.G.M. Increased maternal BMI is associated with infant wheezing in early life: A prospective cohort study. J. Dev. Orig. Health Dis. 2014, 5, 351–360. [Google Scholar] [CrossRef]
- Lee, A.; Hsu, H.-H.L.; Chiu, Y.-H.M.; Bose, S.; Rosa, M.J.; Kloog, I.; Wilson, A.; Schwartz, J.; Cohen, S.; Coull, B.A.; et al. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J. Allergy Clin. Immunol. 2018, 141, 1880–1886. [Google Scholar] [CrossRef] [Green Version]
- Rosa, M.J.; Just, A.C.; Kloog, I.; Pantic, I.; Schnaas, L.; Lee, A.; Bose, S.; Chiu, Y.-H.M.; Hsu, H.-H.L.; Coull, B.; et al. Prenatal particulate matter exposure and wheeze in Mexican children. Ann. Allergy Asthma Immunol. 2017, 119, 232–237.e1. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Shorey-Kendrick, L.E.; Milner, K.; Schilling, D.; Tiller, C.; Vuylsteke, B.; Scherman, A.; Jackson, K.; Haas, D.M.; Harris, J.; et al. Oral Vitamin C (500 mg/d) to Pregnant Smokers Improves Infant Airway Function at 3 Months (VCSIP). A Randomized Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1139–1147. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Milner, K.F.; Scherman, A.J.; Schilling, D.G.; Tiller, C.J.; Vuylsteke, B.; Shorey-Kendrick, L.E.; Spindel, E.R.; Schuff, R.; Mitchell, J.; et al. Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function (VCSIP): Rationale, design, and methods of a randomized, controlled trial of vitamin C supplementation in pregnancy for the primary prevention of effects of in utero tobacco smoke exposure on infant lung function and respiratory health. Contemp. Clin. Trials 2017, 58, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Scherman, A.; Tolosa, J.E.; McEvoy, C. Smoking cessation in pregnancy: A continuing challenge in the United States. Ther. Adv. Drug Saf. 2018, 9, 457–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 2000, 107, 5–12. [Google Scholar] [CrossRef]
- Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair—State of the art and future directions. Brain Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef]
- Camargo, C.A.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinman, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Siberry, G.K.; Abzug, M.J.; Nachman, S. Panel on Guidelines for Prevention and Treatment of Opportunistic Infections in HIV-Exposed and HIV-Infected Children—A working group of the Office of AIDS Research (OAR) Advisory Council* Executive Summary: Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Exposed and HIV-Infected Children: Recommendations From the National Institutes of Health, the Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. J. Pediatr. Infect. Dis. Soc. 2013, 2, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Hallit, S.; Leynaert, B.; Delmas, M.C.; Rocchi, S.; De Blic, J.; Marguet, C.; Scherer, E.; Dufourg, M.N.; Bois, C.; Reboux, G.; et al. Wheezing phenotypes and risk factors in early life: The ELFE cohort. PLoS ONE 2018, 13, e0196711. [Google Scholar]
- Martinez, F.D.; Wright, A.L.; Taussig, L.M.; Holberg, C.J.; Halonen, M.; Morgan, W.J. Asthma and Wheezing in the First Six Years of Life. N. Engl. J. Med. 1995, 332, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Gabe, T. Poverty in the United States: 2013–2015. Available online: https://fas.org/sgp/crs/misc/RL33069.pdf (accessed on 28 August 2020).
- Smith, L.A.; Hatcher-Ross, J.L.; Wertheimer, R.; Kahn, R.S. Rethinking Race/Ethnicity, Income, and Childhood Asthma: Racial/Ethnic Disparities Concentrated among the Very Poor. Public Health Rep. 2005, 120, 109–116. [Google Scholar] [CrossRef]
- Orta, O.R.; Tworoger, S.S.; Terry, K.L.; Coull, B.A.; Gelaye, B.; Kirschbaum, C.; Sánchez, S.E.; Williams, M.A. Stress and hair cortisol concentrations from preconception to the third trimester. Stress 2018, 22, 60–69. [Google Scholar] [CrossRef]
- D’Anna-Hernandez, K.L.; Ross, R.G.; Natvig, C.L.; Laudenslager, M.L. Hair cortisol levels as a retrospective marker of hypothalamic–pituitary axis activity throughout pregnancy: Comparison to salivary cortisol. Physiol. Behav. 2011, 104, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Caparros-Gonzalez, R.A.; Romero-Gonzalez, B.; Strivens-Vilchez, H.; Gonzalez-Perez, R.; Martinez-Augustin, O.; Peralta-Ramirez, M.I. Hair cortisol levels, psychological stress and psychopathological symptoms as predictors of postpartum depression. PLoS ONE 2017, 12, e0182817. [Google Scholar] [CrossRef] [PubMed]
- Turner-Cobb, J.M. Psychological and stress hormone correlates in early life: A key to HPA-axis dysregulation and normalisation. Stress 2005, 8, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Staufenbiel, S.M.; Penninx, B.W.; Spijker, A.T.; Elzinga, B.M.; Van Rossum, E.F. Hair cortisol, stress exposure, and mental health in humans: A systematic review. Psychoneuroendocrinology 2013, 38, 1220–1235. [Google Scholar] [CrossRef] [PubMed]
N (%) or Median (IQR) | |||||
---|---|---|---|---|---|
Overall | No Wheeze | Wheeze | p-Value a | ||
Maternal | n = 132 | n = 72 | n = 60 | ||
Age (years) | 28 (23.5, 31.5) | 28.5 (24.0, 32.0) | 26 (22.0, 31.0) | 0.21 | |
Race | American Indian and Alaska Native | 2 (1.5) | 1 (1.4) | 1 (1.7) | 0.99 |
Black/African American | 22 (16.7) | 12 (16.7) | 10 (16.7) | ||
More than one Race | 10 (7.6) | 6 (8.3) | 4 (6.7) | ||
White | 98 (74.2) | 53 (73.6) | 45 (75.0) | ||
Insurance status | Government provided | 112 (84.9) | 56 (77.8) | 56 (93.3) | 0.03 |
None or self-paid | 2 (1.5) | 1 (1.4) | 1 (1.7) | ||
Private insurance | 18 (13.6) | 15 (20.8) | 3 (5.0) | ||
Household income | <$25,000 | 35 (26.5) | 23 (31.9) | 12 (20.0) | 0.66 |
$25,000–$60,000 | 57 (43.2) | 27 (37.5) | 30 (50.0) | ||
>$60,000 | 7 (5.3) | 5 (6.9) | 2 (3.3) | ||
Unknown and other * | 33 (25.0) | 17 (28.3) | 16 (26.7) | ||
Marital status | Divorced | 7 (5.3) | 4 (5.6) | 3 (5.0) | 0.29 |
Married | 24 (18.2) | 17 (23.6) | 7 (11.7) | ||
Significant other | 56 (42.4) | 30 (41.7) | 26 (43.3) | ||
Single | 45 (34.1) | 21 (29.2) | 24 (40.0) | ||
Education | Bachelor’s degree | 5 (3.8) | 3 (4.2) | 2 (3.3) | 0.74 |
High school or GED | 44 (33.3) | 21 (29.2) | 23 (38.3) | ||
Less than high school | 29 (22.0) | 17 (23.6) | 12 (20.0) | ||
Some college | 54 (40.9) | 31 (43.1) | 23 (38.3) | ||
Asthma | No | 84 (63.6) | 51 (70.8) | 33 (55.0) | 0.06 |
Yes | 48 (36.4) | 21 (29.2) | 27 (45.0) | ||
Depression/anxiety | No | 84 (63.6) | 50 (69.4) | 34 (56.7) | 0.13 |
Yes | 48 (36.4) | 22 (30.6) | 26 (43.3) | ||
CPD baseline | 7.0 (4.0, 10.0) | 8.0 (4.0, 10.0) | 5.0 (4.0, 10.0) | 0.14 | |
CPD postpartum b | 10 (5.0–10.0) | 10.0 (5.0–10.0) | 7.0 (5.0–10.0) | 0.15 | |
Diabetes | No | 130 (98.5) | 70 (97.2) | 60 (100) | 0.19 |
Yes | 2 (1.5) | 2 (2.8) | 0 (0) | ||
BMI pre-pregnancy | 26.7 (22.6, 33.2) | 25.9 (22.2, 32.4) | 26.8 (23.3, 33.7) | 0.39 | |
Treatment group (vitamin C/placebo) | A | 64 (48.5) | 32 (44.4) | 32 (53.3) | 0.31 |
B | 68 (51.5) | 40 (55.6) | 28 (46.7) | ||
Child | |||||
Term birth | No term | 14 (10.6) | 8 (11.1) | 6 (10.0) | 0.84 |
Term | 118 (89.4) | 64 (88.9) | 54 (90.0) | ||
Sex | Female | 64 (48.5) | 38 (52.8) | 26 (43.3) | 0.28 |
Male | 68 (51.5) | 34 (47.2) | 34 (56.7) |
No Wheeze N (%) | Wheeze N (%) | p-Value a | Unadjusted OR (95% CI) | p-Value a,c | Adjusted OR (95% CI) b | p-Value a,b,c | ||||
---|---|---|---|---|---|---|---|---|---|---|
Log (HCC) > 3.55 pg/mg | No | 52 (64.2) | 29 (35.8) | ref | ref | |||||
Yes | 20 (39.2) | 31 (60.78) | 0.005 | 2.78 | (1.35–5.73) | 0.006 | 2.83 | (1.31–6.14) | 0.008 | |
HCC quartiles | ||||||||||
1 | 18 (54.6) | 15 (45.5) | ref | ref | ||||||
2 | 25 (75.8) | 8 (24.2) | 0.071 | 0.38 | (0.13–1.10) | 0.074 c | 0.24 | (0.08–0.78) | 0.018 c | |
3 | 16 (48.5) | 17 (51.52) | 0.622 | 1.28 | (0.49–3.35) | 0.623 | 1.34 | (0.48–3.74) | 0.573 | |
4 | 13 (39.4) | 20 (60.6) | 0.218 | 1.85 | (0.69–4.91) | 0.219 | 1.49 | (0.53–4.17) | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherman, A.; Spindel, E.R.; Park, B.; Tepper, R.; Erikson, D.W.; Morris, C.; McEvoy, C.T. Maternal Prenatal Hair Cortisol Is Associated with Child Wheeze among Mothers and Infants with Tobacco Smoke Exposure and Who Face High Socioeconomic Adversity. Int. J. Environ. Res. Public Health 2021, 18, 2764. https://doi.org/10.3390/ijerph18052764
Scherman A, Spindel ER, Park B, Tepper R, Erikson DW, Morris C, McEvoy CT. Maternal Prenatal Hair Cortisol Is Associated with Child Wheeze among Mothers and Infants with Tobacco Smoke Exposure and Who Face High Socioeconomic Adversity. International Journal of Environmental Research and Public Health. 2021; 18(5):2764. https://doi.org/10.3390/ijerph18052764
Chicago/Turabian StyleScherman, Ashley, Eliot R. Spindel, Byung Park, Robert Tepper, David W. Erikson, Cynthia Morris, and Cindy T. McEvoy. 2021. "Maternal Prenatal Hair Cortisol Is Associated with Child Wheeze among Mothers and Infants with Tobacco Smoke Exposure and Who Face High Socioeconomic Adversity" International Journal of Environmental Research and Public Health 18, no. 5: 2764. https://doi.org/10.3390/ijerph18052764