Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja California, Mexico
Abstract
:1. Introduction
2. Materials and Methods
- File: Allows to upload the file to analyze. When loading the file, the value of each variable must be selected, that is, whether it is categorical, numeric, or text, and its role within the analysis, if it works as a feature, target, meta, or skip. In this case, our aims were AMI and FRCV; we registered it as categorical.
- Data table: Allows us to visualize in a table the uploaded file.
- Scatter plot: This graphic allows us to see continuous data represented in two dimensions.
- Box plot: This graphic shows the distribution of the values of each attribute.
- Classification tree viewer: Allows us to visualize the resulting analysis of the model tree classification. It shows a classification tree that indicates the hierarchy of each value, which allows us to determine the most important.
- Classification Tree.
- Logistic regression.
- Random Forest.
- kNN.
- SVM.
- Tests and Scores: Analyzes the information using selected models, and shows different parameters like accuracy, Precision, F1, recall.
- Confusion Matrix: Generates a matrix presenting false positives, true positives, false negatives, and true negatives.
2.1. Description of the Database
2.2. Machine Learning Models for Thoracic Pain Evaluation
3. Results
3.1. Tree Classification
3.2. Cross-Validation
4. Discussion
4.1. Relationship of Secondary Factors Variables with IAM
4.1.1. Patients with Smoking Habits
4.1.2. Patients with Hypertension
4.1.3. Patients with Diabetes
4.1.4. Patients with Chronic Kidney Disease
4.1.5. Patients with Dyslipidemia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Term | Type | Meaning |
---|---|---|
Edad | Numeric | Age |
Género | Categorical | Gender |
Fumador | Categorical | Smoker |
HTA | Categorical | Hypertension |
Dyslipidemia | Categorical | Dislipidemia |
Diabetes | Categorical | Diabetes |
ERC (Cr Basal) | Categorical | Chronic Kidney Disease |
Suma FRCV | Numeric | Sum of Cardiovascular Risk Factors |
C. Isquémica Previa | Categorical | Previous Ischemic Heart Disease |
PPT | Numeric | Pretest Probability of Ischemic Heart Disease calculated from the type of chest pain and age |
Rangos PPT | Categorical | Pretest Probability Ranges |
Tipo dolor | Categorical | Pain type |
TnT Ingreso | Numeric | Troponin levels upon entry |
TnT Curva (4 h) | Numeric | Troponin levels 4 h after entry |
ECG | Categorical | Electrocardiogram |
TC > 100 | Categorical | Body Temperature |
IC | Categorical | Ictus |
Alta Precoz | Categorical | Early discharge |
UDT | Categorical | Thoracic Pain Units |
Ingreso | Numeric | Entry (days) |
Ergometría | Categorical | Ergometry |
Eco-stress | Categorical | Eco-stress |
Cate | Categorical | Catheterization |
Angio TAC | Categorical | Computed Tomography Angiography |
AMI | Categorical | Acute Myocardial Infarction |
Revascularización | Categorical | Revascularization |
Appendix B
SCORE | ASCVD | Framingham |
---|---|---|
Age | Age | Age |
Gender | Gender | Gender |
Smoking habits | Race | Smoking habits |
Total cholesterol (mg/dL) | Total cholesterol (mg/dL) | Total cholesterol (mg/dL) |
HDL-cholesterol (mg/dL) | HDL-cholesterol (mg/dL) | HDL-cholesterol (mg/dL) |
Systolic blood pressure (mmHg) | Systolic blood pressure (mmHg) | Systolic blood pressure (mmHg) |
Diastolic blood pressure (mmHg) | ||
Smoking habits | ||
Treated for High pressure | ||
Diabetes |
References
- World Health Organization (WHO). WHO Reveals Leading Causes of Death and Disability Worldwide: 2000–2019. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 December 2020).
- World Heart Federation Enfermedades Cardiovasculares en México 2017. Available online: https://www.world-heart-federation.org/wp-content/uploads/2017/05/Cardiovascular_diseases_in_Mexico__Spanish_.pdf (accessed on 17 February 2021).
- Instituto Nacional de Estadística y Geografía. Características de las Defunciones Registradas en México durante 2018; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2019. [Google Scholar]
- Mair, J.; Lindahl, B.; Hammarsten, O.; Müller, C.; Giannitsis, E.; Huber, K.; Möckel, M.; Plebani, M.; Thygesen, K.; Jaffe, A.S. How is cardiac troponin released from injured myocardium? Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Cortés Valerio, A.; Cortés Bejarano, F.; Cortés Morales, E.; Duarte Núñez, D.; Quesada Campos, J. Alteraciones electrofisiológicas y/o bioquímicas del trauma cardíaco. Med. Leg. Costa Rica 2019, 36, 62–67. [Google Scholar]
- Gallo-Villegas, J.A.; Aristizábal-Ocampo, D. La prueba de esfuerzo electrocardiográfica: Utilidad en el diagnóstico y pronóstico de la enfermedad coronaria. Med. Lab. 2015, 21, 63–84. [Google Scholar] [CrossRef] [Green Version]
- Conroy, R. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Sarre-Álvarez, D.; Cabrera-Jardines, R.; Rodríguez-Weber, F.; Díaz-Greene, E. Enfermedad cardiovascular aterosclerótica. Revisión de las escalas de riesgo y edad cardiovascular. Med. Interna Mex. 2018, 34, 910–923. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Baccouche, A.; Garcia-Zapirain, B.; Castillo Olea, C.; Elmaghraby, A. Ensemble Deep Learning Models for Heart Disease Classification: A Case Study from Mexico. Information 2020, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Orange Biolab Orange Biolab. Available online: https://orange.biolab.si/widget-catalog/ (accessed on 18 November 2020).
- Pacheco Rodríguez, A. Manual de Emergencia Médica Prehospitalaria; Arán: Madrid, Spain, 2001; ISBN 978-84-86725-94-5. [Google Scholar]
- Dalton, A.L.; Limmer, D.; Mistovich, J.J. Urgencias Médicas: Evaluación, Atención y Transporte de Pacientes; Editorial El Manual Moderno: Bogota, Colombia, 2000; ISBN 978-607-448-212-6. [Google Scholar]
- Centro Nacional de Excelencia Tecnológica en Salud. Guía de Práctica Clínica Diagnóstico, Estratificación y Tratamiento de Pacientes con Síndrome Coronario Agudo sin Elevación ST; Centro Nacional de Excelencia Tecnológica en Salud: Mexico City, Mexico, 2010. [Google Scholar]
- Hidalgo Sanjuán, M.V.; Fernández Aguirre, M.C.; Linde de Luna, F.; Rodríguez Martínez, R. Neumosur: Dolor Torácico. pp. 267–274. Available online: https://www.neumosur.net/files/EB04-21%20dolor%20toracico.pdf (accessed on 17 February 2021).
- Ostabal-Artigas, M.I. Dolor torácico en los servicios de urgencias. Med. Integral 2020, 40, 40–49. [Google Scholar]
- Rodríguez González, M.; Tárraga Marcos, M.L.; Madrona Marcos, F.; Sadek, I.M.; Celada Roldan, C.; Tárraga López, P.J. Efectos de la dieta mediterránea sobre los factores de riesgo cardiovascular. J. Negat. Posit. Results 2019, 25–51. [Google Scholar] [CrossRef]
- Rajesh, N.; Maneesha, T.; Hafeez, S.; Krishna, H. Prediction of Heart Disease Using Machine Learning Algorithms. IJET 2018, 7, 363. [Google Scholar] [CrossRef]
- Pallarés-Carratalá, V.; Pascual-Fuster, V.; Godoy-Rocatí, D. Dislipidemia y riesgo vascular. Una revisión basada en nuevas evidencias. SEMERGEN Med. Fam. 2015, 41, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, R.; Fuller, E.E.; Harper, J.F.; Feldman, M. Influence of Smoking on the Location of Acute Myocardial Infarctions. ISRN Cardiol. 2011, 2011, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Friedman, G.D. Cigarette Smoking and Chest Pain. Ann. Intern. Med. 1975, 83, 1. [Google Scholar] [CrossRef] [PubMed]
- Lawes, C.M.; Hoorn, S.V.; Rodgers, A. Global burden of blood-pressure-related disease, 2001. Lancet 2008, 371, 1513–1518. [Google Scholar] [CrossRef]
- Rodríguez, E.D.; Ramírez, R.J.T.; Jiménez, A. de la C.A. Factores de riesgo de infarto agudo del miocardio en pacientes con diagnóstico de hipertensión arterial. Multimed 2014, 18, 1–13. [Google Scholar]
- Vilches Izquierdo, E.; Ochoa Montes, L.A.; González Lugo, M.; Ramos Marrero, L.; Tamayo Vicente, N.D.; García Ones, D.; Díaz Londres, H. Impact of essential blood hypertension and ischemic heart diseases in sudden cardiac death victims. Rev. Cuba. Salud Pública 2016, 42, 432–441. [Google Scholar]
- Maiz Gurruchaga, A. Consecuencias patológicas de la obesidad: Hipertensión arterial, diabetes mellitus y dislipidemia. Bol. Esc. Med. 1997, 26, 18–21. [Google Scholar] [CrossRef]
- Carabetti, J.A.M. Cardiomiopatía diabética. Rev. Urug. Cardiol. 2017, 32. [Google Scholar] [CrossRef]
- Valdés Ramos, E.R.; Rivera Chávez, M.; Bencosme Rodríguez, N. Comportamiento del infarto agudo del miocardio en personas con diabetes mellitus de la provincia Granma. Rev. Cuba. Endocrinol. 2012, 23, 128–138. [Google Scholar]
- Mendoza-Medellín, A.; Velázquez, G.T. Metabolismo energético del corazón normal e infartado. Ciencia Ergo Sum 2002, 9, 282–292. [Google Scholar]
- López Gómez, J.M.; Vega Martínez, A. Alteraciones Cardiovasculares en la Enfermedad Renal Crónica|Nefrología al día. Available online: http://www.nefrologiaaldia.org/es-articulo-alteraciones-cardiovasculares-enfermedad-renal-cronica-179 (accessed on 18 November 2020).
- Wright, S.A.; Schultz, A.E. The rising tide of artificial intelligence and business automation: Developing an ethical framework. Bus. Horiz. 2018, 61, 823–832. [Google Scholar] [CrossRef]
- Cedeño-Mora, S.; Goicoechea, M.; Torres, E.; Verdalles, Ú.; Pérez de José, A.; Verde, E.; García de Vinuesa, S.; Luño, J. Predicción del riesgo cardiovascular en pacientes con enfermedad renal crónica. Nefrología 2017, 37, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, F.; Iglesias, P.; Pedro-Botet, J.; Tébar, F.J.; Ortega, E.; Nubiola, A.; Pardo, J.L.; Maldonado, G.F.; Obaya, J.C.; Matute, P.; et al. Diabetes mellitus y riesgo cardiovascular: Recomendaciones del Grupo de Trabajo Diabetes y Enfermedad Cardiovascular de la Sociedad Española de Diabetes (SED, 2015). Aten. Primaria 2016, 48, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Centro Nacional de Programas Preventivos y Control de Enfermedades Estrategia Para la Prevención y Control del Sobrepeso. 2014. Available online: http://www.cenaprece.salud.gob.mx/programas/interior/adulto/descargas/pdf/EstrategiaSODDistritoFederal.pdf (accessed on 17 February 2021).
- Miguel Soca, P.E. Dislipidemias. ACIMED 2009, 20, 265–273. [Google Scholar]
- García Milian, A.J.; Creus García, E.D. La obesidad como factor de riesgo, sus determinantes y tratamiento. Rev. Cuba. Med. Gen. Integral 2016, 32, 1–13. [Google Scholar]
Classic Patterns of Thoracic Pain | ||||
---|---|---|---|---|
Condition | Location | Radiating Pain | Duration | Type of Pain |
AMI | Retroesternal | Arm, Neck | >15 min | Oppressive |
Angina | Retroesternal | Arm, Neck | 5–20 min | Oppressive |
Aortic dissection | Retroesternal | Interescapular | Constant | Tearing |
TEP | Hemithorax | - | Constant | |
Pneumothorax | Hemithorax | Neck, Back | Constant | |
Pericarditis | Retrosternal, shoulder, arm | Back, Neck | Constant | |
Esophageal ruptura | Retrosternal | Posterior Thorax | Constant | |
Esofagitis | Retrosternal | Interescapular | Minutes to hours | |
Esophageal spasm | Retrosternal | Interescapular | Minutes to hours | |
Musculoskeletal | Localized | - | Variable |
Tree Classification | ||
---|---|---|
Level | AMI | FRCV |
1 | Angio TAC | Dyslipidemia |
2 | Ergometry | CKD |
2 | TnT curve 4 h | Diabetes |
3 | Eco-Stress | Hypertension |
3 | Catheterization | Smoking habits |
4 | PPT | Age |
5 | - | TnT entry |
6 | - | Gender |
Metric | Expresion |
---|---|
Accuracy | |
F1 | |
Precision | |
Recall |
Variables | Classification | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|
Dyslipidemia | Tree classification | 0.780 | 0.787 | 0.787 | 0.787 |
SVM | 0.823 | 0.737 | 0.750 | 0.753 | |
kNN | 0.630 | 0.618 | 0.614 | 0.622 | |
Logistic Regression | 0.969 | 0.938 | 0.937 | 0.940 | |
Random Forest | 0.795 | 0.753 | 0.614 | 0.622 | |
Hypertension | Tree classification | 0.765 | 0.762 | 0.761 | 0.762 |
SVM | 0.846 | 0.757 | 0.757 | 0.758 | |
kNN | 0.733 | 0.689 | 0.688 | 0.691 | |
Logistic Regression | 0.994 | 0.966 | 0.966 | 0.966 | |
Random Forest | 0.825 | 0.762 | 0.762 | 0.764 | |
Smoking | Tree classification | 0.691 | 0.580 | 0.578 | 0.586 |
SVM | 0.716 | 0.514 | 0.547 | 0.569 | |
kNN | 0.658 | 0.510 | 0.504 | 0.532 | |
Logistic Regression | 0.918 | 0.799 | 0.796 | 0.803 | |
Random Forest | 0.739 | 0.587 | 0.585 | 0.606 | |
Diabetes | Tree classification | 0.712 | 0.727 | 0.729 | 0.701 |
SVM | 0.746 | 0.612 | 0.725 | 0.705 | |
kNN | 0.546 | 0.602 | 0.590 | 0.625 | |
Logistic Regression | 0.986 | 0.961 | 0.963 | 0.961 | |
Random Forest | 0.733 | 0.704 | 0.706 | 0.724 | |
Rangos PPT | Tree classification | 0.997 | 0.990 | 0.990 | 0.990 |
SVM | 0.895 | 0.707 | 0.699 | 0.720 | |
kNN | 0.992 | 0.855 | 0.954 | 0.960 | |
Logistic Regression | 0.951 | 0.845 | 0.841 | 0.851 | |
Random Forest | 0.977 | 0.880 | 0.881 | 0.891 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Mendizabal, V.; Castillo-Olea, C.; Gómez-Siono, A.; Zuñiga, C. Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja California, Mexico. Int. J. Environ. Res. Public Health 2021, 18, 2155. https://doi.org/10.3390/ijerph18042155
Rojas-Mendizabal V, Castillo-Olea C, Gómez-Siono A, Zuñiga C. Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja California, Mexico. International Journal of Environmental Research and Public Health. 2021; 18(4):2155. https://doi.org/10.3390/ijerph18042155
Chicago/Turabian StyleRojas-Mendizabal, Veronica, Cristián Castillo-Olea, Alexandra Gómez-Siono, and Clemente Zuñiga. 2021. "Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja California, Mexico" International Journal of Environmental Research and Public Health 18, no. 4: 2155. https://doi.org/10.3390/ijerph18042155
APA StyleRojas-Mendizabal, V., Castillo-Olea, C., Gómez-Siono, A., & Zuñiga, C. (2021). Assessment of Thoracic Pain Using Machine Learning: A Case Study from Baja California, Mexico. International Journal of Environmental Research and Public Health, 18(4), 2155. https://doi.org/10.3390/ijerph18042155