Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Metabolic Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fraser, G.E.; Sabaté, J.; Beeson, W.L.; Strahan, T.M. A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study. Arch. Intern. Med. 1992, 152, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Trigueiro, H.; Gambera, A.; Alonzo, E.; et al. Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2021, 1–8. [Google Scholar] [CrossRef]
- Jenab, M.; Sabaté, J.; Slimani, N.; Ferrari, P.; Mazuir, M.; Casagrande, C.; Deharveng, G.; Tjønneland, A.; Olsen, A.; Overvad, K.; et al. Consumption and portion sizes of tree nuts, peanuts and seeds in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Br. J. Nutr. 2006, 96 (Suppl. 2), S12–S23. [Google Scholar] [CrossRef]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Estruch, R. Nut consumption and age-related disease. Maturitas 2016, 84, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, V.; Kunyanga, C.N.; Biesalski, H.K. Health benefits of nut consumption with special reference to body weight control. Nutrition 2012, 28, 1089–1097. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.; Clifton, P.M. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients 2018, 10, 1935. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. (Lond.) 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Zappalà, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutrition Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, D.; Platania, A.; Conti, A.; Falla, M.; D’Urso, M.; Marranzano, M. Dietary micronutrient and mineral intake in the mediterranean healthy eating, ageing, and lifestyle (MEAL) study. Antioxidants 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Blanco Mejia, S.; Kendall, C.W.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Altamimi, M.; Zidan, S.; Badrasawi, M. Effect of tree nuts consumption on serum lipid profile in hyperlipidemic individuals: A systematic review. Nutr. Metab. Insights 2020, 13, 1178638820926521. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017, 7, e016863. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef]
- Fernández-Montero, A.; Bes-Rastrollo, M.; Beunza, J.J.; Barrio-Lopez, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martínez-González, M.A. Nut consumption and incidence of metabolic syndrome after 6-year follow-up: The SUN (Seguimiento Universidad de Navarra, University of Navarra Follow-up) cohort. Public Health Nutr. 2013, 16, 2064–2072. [Google Scholar] [CrossRef]
- Ibarrola-Jurado, N.; Bulló, M.; Guasch-Ferré, M.; Ros, E.; Martínez-González, M.A.; Corella, D.; Fiol, M.; Wärnberg, J.; Estruch, R.; Román, P.; et al. Cross-sectional assessment of nut consumption and obesity, metabolic syndrome and other cardiometabolic risk factors: The PREDIMED study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; De Curtis, A.; Costanzo, S.; Bracone, F.; Persichillo, M.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Nut consumption is inversely associated with both cancer and total mortality in a Mediterranean population: Prospective results from the Moli-sani study. Br. J. Nutr. 2015, 114, 804–811. [Google Scholar] [CrossRef]
- López-Uriarte, P.; Bulló, M.; Casas-Agustench, P.; Babio, N.; Salas-Salvadó, J. Nuts and oxidation: A systematic review. Nutr. Rev. 2009, 67, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Rezaie, P.; Ferns, G.A.; Gao, H.-K. Impact of different types of tree nut, peanut, and soy nut consumption on serum C-reactive protein (CRP): A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltim.) 2016, 95, e5165. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xia, J.; Ke, Y.; Cheng, J.; Yuan, J.; Wu, S.; Lv, Z.; Huang, S.; Kim, J.H.; Wong, S.Y.-S.; et al. Effects of nut consumption on selected inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2018, 54, 129–143. [Google Scholar] [CrossRef]
- Kelly, C.M.; Smith, R.D.; Williams, C.M. Dietary monounsaturated fatty acids and haemostasis. Proc. Nutr. Soc. 2001, 60, 161–170. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; OKeefe, J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Heart 2019, 6, e001011. [Google Scholar] [CrossRef]
- Vasdev, S.; Gill, V. The antihypertensive effect of arginine. Int. J. Angiol. 2008, 17, 7–22. [Google Scholar] [CrossRef]
- Smeets, E.T.H.C.; Mensink, R.P.; Joris, P.J. Effects of tree nut and groundnut consumption compared with those of l-arginine supplementation on fasting and postprandial flow-mediated vasodilation: Meta-analysis of human randomized controlled trials. Clin. Nutr. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar]
- Godos, J.; Sinatra, D.; Blanco, I.; Mulè, S.; La Verde, M.; Marranzano, M. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef]
- Mena, P.; Bresciani, L. Dietary fibre modifies gut microbiota: What’s the role of (poly)phenols? Int. J. Food Sci. Nutr. 2020, 71, 783–784. [Google Scholar] [CrossRef]
- Casas-Agustench, P.; López-Uriarte, P.; Bulló, M.; Ros, E.; Cabré-Vila, J.J.; Salas-Salvadó, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 126–135. [Google Scholar] [CrossRef]
- Bolling, B.W. Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. Comp. Rev. Food Sci. Food Safety 2017, 16, 346–368. [Google Scholar] [CrossRef]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Lee-Bravatti, M.A.; Wang, J.; Avendano, E.E.; King, L.; Johnson, E.J.; Raman, G. Almond Consumption and Risk Factors for Cardiovascular Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2019, 10, 1076–1088. [Google Scholar] [CrossRef]
- Eslampour, E.; Asbaghi, O.; Hadi, A.; Abedi, S.; Ghaedi, E.; Lazaridi, A.-V.; Miraghajani, M. The effect of almond intake on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 50, 102399. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.-Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Platania, A.; Castiglione, D.; Sinatra, D.; Urso, M.D.; Marranzano, M. Fluid Intake and Beverage Consumption Description and Their Association with Dietary Vitamins and Antioxidant Compounds in Italian Adults from the Mediterranean Healthy Eating, Aging and Lifestyles (MEAL) Study. Antioxidants 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
Low Nut Intake (Mean 4.3 g/d) | High Nut Intake (Mean 39.7 g/d) | p-Value | |
---|---|---|---|
Sex, n (%) | 0.619 | ||
Male | 379 (41.7) | 380 (40.6) | |
Female | 530 (58.3) | 557 (59.4) | |
Age group, n (%) | 0.004 | ||
<30 | 173 (19.0) | 169 (18.0) | |
30–44 | 243 (26.7) | 247 (26.4) | |
44–65 | 294 (32.3) | 367 (39.2) | |
>65 | 199 (21.9) | 154 (16.4) | |
Educational level, n (%) | 0.064 | ||
Low | 317 (34.9) | 346 (36.9) | |
Medium | 325 (35.8) | 361 (38.5) | |
High | 267 (29.4) | 230 (24.5) | |
Occupational level, n (%) | 0.022 | ||
Unemployed | 214 (25.5) | 227 (30.9) | |
Low | 146 (17.4) | 94 (12.8) | |
Medium | 225 (26.8) | 198 (27.0) | |
High | 253 (30.2) | 215 (29.3) | |
Smoking status, n (%) | 0.497 | ||
Non-smoker | 552 (60.7) | 590 (63.0) | |
Current smoker | 220 (24.2) | 222 (23.7) | |
Former smoker | 137 (15.1) | 125 (13.3) | |
Physical activity level, n (%) | 0.345 | ||
Sedentary | 161 (20.0) | 156 (18.6) | |
Low | 387 (48.0) | 432 (51.6) | |
Medium | 258 (32.0) | 249 (29.7) | |
High | |||
BMI categories, n (%) | 0.657 | ||
Normal | 395 (46.6) | 418 (48.0) | |
Overweight | 306 (36.1) | 296 (34.0) | |
Obese | 146 (17.2) | 156 (17.9) | |
Mediterranean diet adherence, n (%) | <0.001 | ||
Low | 556 (61.2) | 450 (48.0) | |
Medium | 276 (30.4) | 383 (40.9) | |
High | 77 (8.5) | 104 (11.1) | |
Health status, n (%) | |||
Hypertension | 487 (53.6) | 427 (45.6) | <0.001 |
Type-2 diabetes | 78 (8.6) | 61 (6.5) | 0.092 |
Dyslipidemia | 174 (19.1) | 164 (17.5) | 0.363 |
Low Nut Intake | High Nut Intake | p-Value | |
---|---|---|---|
Energy intake (kcal/d) | 2104.5 (44.2) | 2090.8 (44.2) | <0.001 |
Macronutrients | |||
Carbohydrates (g/d) | 343.8 (7.8) | 294.7 (7.1) | <0.001 |
Fiber (g/d) | 36.7 (1.2) | 31.0 (0.9) | <0.001 |
Protein (g/d) | 82.3 (2.1) | 84.8 (2.1) | <0.001 |
Fat (g/d) | 51.6 (1.4) | 64.0 (1.4) | <0.001 |
Cholesterol (mg/d) | 155.4 (6.7) | 197.3 (6.1) | <0.001 |
SFA % | 19.9 (0.6) | 24.9 (0.5) | <0.001 |
MUFA % | 23.3 (0.5) | 26.1 (0.5) | <0.001 |
PUFA % | 10.1 (0.2) | 11.3 (0.3) | <0.001 |
Total Omega-3 g (g/d) | 1.4 (0.0) | 1.2 (0.0) | <0.001 |
Micronutrients | |||
Vitamin A (Retinol) (mg/d) | 724.5 (11.7) | 821.9 (15.9) | <0.001 |
Vitamin C (mg/d) | 122.7 (3.2) | 141.0 (3.2) | <0.001 |
Vitamin E (mg/d) | 7.2 (0.1) | 8.8 (0.1) | <0.001 |
Vitamin B12 (mg/d) | 5.0 (0.2) | 6.0 (0.1) | <0.001 |
Vitamin D (mg/d) | 3.5 (0.1) | 4.6 (0.2) | <0.001 |
Total polyphenols | 514.4 (25.0) | 544.7 (19.4) | <0.001 |
Minerals | |||
Sodium (mg/d) | 2617.6 (32.4) | 2765.3 (40.5) | <0.001 |
Potassium (mg/d) | 3183.5 (40.5) | 3709.3 (48.8) | <0.001 |
Magnesium (mg/d) | 403.4 (11.2) | 387.2 (9.6) | <0.001 |
Selenium (mg/d) | 114.0 (3.6) | 100.7 (2.9) | 0.153 |
Zinc (mg/d) | 12.4 (0.3) | 12.4 (0.3) | <0.001 |
Calcium (mg/d) | 665.9 (26.8) | 756.7 (21.3) | <0.001 |
Iron (mg/d) | 15.3 (0.5) | 15.4 (0.4) | <0.001 |
Nut groups | |||
Chestnuts (g/d) | 4.5 (2.1) | 4.5 (3.2) | 0.215 |
Peanuts (g/d) | 0.6 (0.2) | 0.6 (0.1) | 0.103 |
Pistachios (g/d) | 0.3 (0.0) | 0.3 (0.0) | 0.278 |
Walnuts (g/d) | 0.6 (0.2) | 0.6 (0.3) | 0.205 |
Almonds (g/d) | 0.6 (0.3) | 0.6 (0.2) | 0.485 |
Hazelnuts (g/d) | 0.6 (0.3) | 0.0 (0.2) | 0.957 |
Hypertension | Type 2 Diabetes | Dyslipidemia | |
---|---|---|---|
OR (95% CI) * | |||
Total nuts | |||
Model 1 a | 0.67 (0.56–0.81) | 0.33 (0.22–0.49) | 0.62 (0.49–0.80) |
Model 2 b | 0.62 (0.47–0.80) | 0.45 (0.26–0.75) | 0.78 (0.55–1.10) |
Model 3 c | 0.61 (0.46–0.80) | 0.44 (0.26–0.74) | 0.78 (0.55–1.10) |
Chestnuts | |||
Model 1 a | 0.94 (0.76–1.17) | 0.79 (0.52–1.18) | 0.76 (0.57–1.01) |
Model 2 b | 0.95 (0.70–1.29) | 0.68 (0.39–1.17) | 0.75 (0.50–1.12) |
Model 3 c | 0.97 (0.71–1.31) | 0.67 (0.39–1.17) | 0.75 (0.50–1.12) |
Peanuts | |||
Model 1 a | 0.89 (0.70–1.15) | 1.07 (0.67–1.73) | 0.72 (0.51–1.00) |
Model 2 b | 0.92 (0.65–1.29) | 1.17 (0.62–2.22) | 0.68 (0.43–1.08) |
Model 3 c | 0.91 (0.64–1.28) | 1.16 (0.61–2.20) | 0.68 (0.43–1.09) |
Pistachios | |||
Model 1 a | 0.84 (0.64–1.10) | 0.67 (0.39–1.15) | 0.85 (0.59–1.22) |
Model 2 b | 0.87 (0.60–1.26) | 0.62 (0.30–1.30) | 1.16 (0.71–1.90) |
Model 3 c | 0.86 (0.59–1.25) | 0.63 (0.30–1.30) | 1.18 (0.72–1.93) |
Walnuts | |||
Model 1 a | 1.09 (0.86–1.40) | 0.89 (0.56–1.42) | 1.22 (0.89–1.67) |
Model 2 b | 1.17 (0.83–1.65) | 0.79 (0.42–1.49) | 1.03 (0.66–1.61) |
Model 3 c | 1.18 (0.83–1.67) | 0.84 (0.44–1.60) | 0.99 (0.63–1.55) |
Almonds | |||
Model 1 a | 0.77 (0.61–0.98) | 1.31 (0.84–2.04) | 1.11 (0.81–1.51) |
Model 2 b | 0.70 (0.50–1.00) | 1.22 (0.66–2.24) | 1.23 (0.79–1.92) |
Model 3 c | 0.70 (0.49–0.99) | 1.17 (0.63–2.15) | 1.26 (0.80–1.96) |
Hazelnuts | |||
Model 1 a | 0.96 (0.73–1.26) | 0.94 (0.56–1.58) | 0.91 (0.64–1.29) |
Model 2 b | 1.07 (0.73–1.56) | 1.35 (0.70–2.60) | 1.12 (0.69–1.80) |
Model 3 c | 1.06 (0.73–1.55) | 1.34 (0.70–2.58) | 1.12 (0.70–1.81) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micek, A.; Godos, J.; Cernigliaro, A.; Cincione, R.I.; Buscemi, S.; Libra, M.; Galvano, F.; Grosso, G. Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults. Int. J. Environ. Res. Public Health 2021, 18, 1847. https://doi.org/10.3390/ijerph18041847
Micek A, Godos J, Cernigliaro A, Cincione RI, Buscemi S, Libra M, Galvano F, Grosso G. Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults. International Journal of Environmental Research and Public Health. 2021; 18(4):1847. https://doi.org/10.3390/ijerph18041847
Chicago/Turabian StyleMicek, Agnieszka, Justyna Godos, Achille Cernigliaro, Raffaele Ivan Cincione, Silvio Buscemi, Massimo Libra, Fabio Galvano, and Giuseppe Grosso. 2021. "Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults" International Journal of Environmental Research and Public Health 18, no. 4: 1847. https://doi.org/10.3390/ijerph18041847
APA StyleMicek, A., Godos, J., Cernigliaro, A., Cincione, R. I., Buscemi, S., Libra, M., Galvano, F., & Grosso, G. (2021). Total Nut, Tree Nut, and Peanut Consumption and Metabolic Status in Southern Italian Adults. International Journal of Environmental Research and Public Health, 18(4), 1847. https://doi.org/10.3390/ijerph18041847