Pulmonary Health Effects of Indoor Volatile Organic Compounds—A Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef]
- Global Health Estimates. Disease Burden by Cause, Age, Sex, by Country and by Region, 2000–2016; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Milton, B.; Whitehead, M.; Holland, P.; Hamilton, V. The social and economic consequences of childhood asthma across the lifecourse: A systematic review. Child. Care Health Dev. 2004, 30, 711–728. [Google Scholar] [CrossRef]
- Perry, R.; Braileanu, G.; Palmer, P.; Stevens, P. The Economic Burden of Pediatric Asthma in the United States: Literature Review of Current Evidence. Pharmacoeconomics 2019, 37, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Teague, W.G.; Meyers, D.A.; Peters, S.P.; Li, X.; Li, H.; Wenzel, S.E.; Aujla, S.; Castro, M.; Bacharier, L.B.; et al. Heterogeneity of severe asthma in childhood: Confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J. Allergy Clin. Immunol. 2011, 127, 382–389. [Google Scholar] [CrossRef]
- Simkovich, S.M.; Goodman, D.; Roa, C.; Crocker, M.E.; Gianella, G.E.; Kirenga, B.J.; Wise, R.A.; Checkley, W. The health and social implications of household air pollution and respiratory diseases. NPJ Prim. Care Respir. Med. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- The World Bank. GDP (Current US$). 2019. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 20 August 2020).
- Bank, T.W. Global Consumption Database. 2010. Available online: http://datatopics.worldbank.org/consumption/product/ (accessed on 20 August 2020).
- FRED. Advance Retail Sales: Furniture and Home Furnishings Stores (RSFHFS). 2020. Available online: https://fred.stlouisfed.org/series/RSFHFS (accessed on 10 August 2020).
- EPA. Volatile Organic Compounds’ Impact on Indoor Air Quality. 2020. Available online: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality (accessed on 10 June 2020).
- Lapillonne, B. Cooling Degree Days (CDD): “EnerDemand”. AC Ownership: Internal Data Base from National Sources. GDP per Capita: “Global Energy & CO2 Data” Based on World Bank. 2019. Available online: https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html (accessed on 20 August 2020).
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Yun, B.H.; Guo, J.; Turesky, R.J. Formalin-Fixed Paraffin-Embedded Tissues—An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. Toxics 2018, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Canova, C.; Jarvis, D.; Walker, S.; Cullinan, P. Systematic review of the effects of domestic paints on asthma related symptoms in people with or without asthma. J. Asthma 2013, 50, 1020–1030. [Google Scholar] [CrossRef] [PubMed]
- Nurmatov, U.B.; Tagiyeva, N.; Semple, S.; Devereux, G.; Sheikh, A. Volatile organic compounds and risk of asthma and allergy: A systematic review. Eur. Respir. Rev. 2015, 24, 92–101. [Google Scholar] [CrossRef]
- Paciencia, I.; Madureira, J.; Rufo, J.; Moreira, A.; Ede, O.F. A systematic review of evidence and implications of spatial and seasonal variations of volatile organic compounds (VOC) in indoor human environments. J. Toxicol. Environ. Health B Crit. Rev. 2016, 19, 47–64. [Google Scholar] [CrossRef]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Rufo, J.C.; Madureira, J.; Fernandes, E.O.; Moreira, A. Volatile organic compounds in asthma diagnosis: A systematic review and meta-analysis. Allergy 2016, 71, 175–188. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Stata. Stata/Mp 14.2—Data Analysis and Statistical Software; Stata Corp. LP: College Station, TX, USA, 2017. [Google Scholar]
- Billionnet, C.; Gay, E.; Kirchner, S.; Leynaert, B.; Maesano, I.A. Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of French dwellings. Environ. Res. 2011, 111, 425–434. [Google Scholar] [CrossRef]
- Maesano, C.N.; Caillaud, D.; Youssouf, H.; Banerjee, S.; Homme, J.P.; Audi, C.; Horo, K.; Toloba, Y.; Ramousse, O.; Maesano, A.I. Indoor exposure to particulate matter and volatile organic compounds in dwellings and workplaces and respiratory health in French farmers. Multidiscip. Respir. Med. 2019, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Rumchev, K.B.; Spickett, J.T.; Bulsara, M.K.; Phillips, M.R.; Stick, S.M. Domestic exposure to formaldehyde significantly increases the risk of asthma in young children. Eur. Respir. J. 2002, 20, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Rumchev, K.; Spickett, J.; Bulsara, M.; Phillips, M.; Stick, S. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 2004, 59, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Garrett, M.H.; Hooper, M.A.; Hooper, B.M.; Rayment, P.R.; Abramson, M.J. Increased risk of allergy in children due to formaldehyde exposure in homes. Allergy 1999, 54, 330–337. [Google Scholar] [CrossRef]
- Flamant-Hulin, M.; Annesi-Maesano, I.; Caillaud, D. Relationships between molds and asthma suggesting non-allergic mechanisms. A rural-urban comparison. Pediatr. Allergy Immunol. 2013, 24, 345–351. [Google Scholar] [CrossRef]
- Hulin, M.; Caillaud, D.; Annesi-Maesano, I. Indoor air pollution and childhood asthma: Variations between urban and rural areas. Indoor Air 2010, 20, 502–514. [Google Scholar] [CrossRef]
- Choi, H.; Schmidbauer, S.J.; Hasselgren, M.; Spengler, J.; Bornehag, C.G.N. Common household chemicals and the allergy risks in pre-school age children. PLoS ONE 2010, 5, e13423. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Hulin, M.; Lavaud, F.; Raherison, C.; Kopferschmitt, C.; Blay, F.B.; Charpin, D.A.; Denis, C. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax 2012, 67, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Hulin, M.; Moularat, S.; Kirchner, S.; Robine, E.; Mandin, C.; Maesano, I.A. Positive associations between respiratory outcomes and fungal index in rural inhabitants of a representative sample of French dwellings. Int. J. Hyg. Environ. Health 2013, 216, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Arif, A.A.; Shah, S.M. Association between personal exposure to volatile organic compounds and asthma among US adult population. Int. Arch. Occup. Environ. Health 2007, 80, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zhao, J.; Xu, B.; Deng, Y.; Xu, Z. Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China. Afr. Health Sci. 2013, 13, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Villbert, K.; Rauhamaa, H.M.; Haahtela, T.; Saarela, K. Prevalence of Plastic Additives in Indoor Air related to Newly Diagnosed Asthma. Indoor Built Environ. 2008, 17, 455–459. [Google Scholar] [CrossRef]
- Gordian, M.E.; Stewart, A.W.; Morris, S.S. Evaporative gasoline emissions and asthma symptoms. Int. J. Environ. Res. Public Health 2010, 7, 3051–3062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Baiz, N.; Banerjee, S.; Charpin, D.A.; Caillaud, D.; Blay, F.D.; Raherison, C.; Lavaud, F.; Maesano, I.A. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems. Ann. Epidemiol. 2013, 23, 778–783. [Google Scholar] [CrossRef]
- Saijo, Y.; Kishi, R.; Sata, F.; Katakura, Y.; Urashima, Y.; Hatakeyama, A.; Kobayashi, S.; Jin, K.; Kurahashi, N.; Kondo, T.; et al. Symptoms in relation to chemicals and dampness in newly built dwellings. Int. Arch. Occup. Environ. Health 2004, 77, 461–470. [Google Scholar] [CrossRef]
- Delfino, R.J.; Gong, H.; Linn, W.S.; Hu, Y.; Pellizzari, E.D. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 348–363. [Google Scholar] [CrossRef]
- Wichmann, F.A.; Muller, A.; Busi, L.E.; Cianni, N.; Massolo, L.; Schlink, U.; Porta, A.; Sly, P.D. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J. Allergy Clin. Immunol. 2009, 123, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Awano, S.; Takata, Y.; Soh, I.; Yoshida, A.; Hamasaki, Y.; Sonoki, K.; Ohsumi, T.; Nishihara, T.; Ansai, T. Correlations between health status and OralChroma-determined volatile sulfide levels in mouth air of the elderly. J. Breath Res. 2011, 5, 046007. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.L.; Elfman, L.; Mi, Y.; Wieslander, G.; Smedje, G.; Norback, D. Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools—Associations with asthma and respiratory symptoms in pupils. Indoor Air 2007, 17, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Baloch, R.M.; Maesano, C.N.; Christoffersen, J.; Banerjee, S.; Gabriel, M.; Csobod, E.; Oliveira, E.; Annesi-Maesano, I.; SINPHONIE Study Group. Indoor air pollution, physical and comfort parameters related to schoolchildren’s health: Data from the European SINPHONIE study. Sci. Total Environ. 2020, 739, 139870. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, H.; Liu, R.; Li, G.; Yu, Y.; An, T. The exposure risk of typical VOCs to the human beings via inhalation based on the respiratory deposition rates by proton transfer reaction-time of flight-mass spectrometer. Ecotoxicol. Environ. Saf. 2020, 197, 110615. [Google Scholar] [CrossRef]
- Brinkman, P.; Pol, M.A.V.D.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel, H.H.; et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy 2017, 47, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Trevillian, L.F.; Ponsonby, A.L.; Dwyer, T.; Kemp, A.; Cochrane, J.; Lim, L.L.; Carmichael, A. Infant sleeping environment and asthma at 7 years: A prospective cohort study. Am. J. Public Health 2005, 95, 2238–2245. [Google Scholar] [CrossRef]
- Dales, R.E.; Cakmak, S. Is residential ambient air limonene associated with asthma? Findings from the Canadian Health Measures Survey. Environ. Pollut. 2019, 244, 966–970. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.; Sherriff, A.; Farrow, A.; Ayres, J.G. Household chemicals, persistent wheezing and lung function: Effect modification by atopy? Eur. Respir. J. 2008, 31, 547–554. [Google Scholar] [CrossRef]
- Tavernier, G.; Fletcher, G.; Gee, I.; Watson, A.; Blacklock, G.; Francis, H.; Fletcher, A.; Frank, T.; Frank, P.C.A. Ipeadam study: Indoor endotoxin exposure, family status, and some housing characteristics in English children. J. Allergy Clin. Immunol. 2006, 117, 656–662. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, A.; Wang, Z.; Ferm, M.; Liang, Y.; Norback, D. Asthmatic symptoms among pupils in relation to winter indoor and outdoor air pollution in schools in Taiyuan, China. Environ. Health Perspect. 2008, 116, 90–97. [Google Scholar] [CrossRef]
- Yeatts, K.B.; Sadig, M.E.; Leith, D.; Kalsbeek, W.; Maskari, F.A.; Couper, D.; Funk, W.E.; Zoubeidi, T.; Chan, R.L.; Trent, C.B. Indoor air pollutants and health in the United Arab Emirates. Environ. Health Perspect. 2012, 120, 687–694. [Google Scholar] [CrossRef]
- Veysi, R.; Heibati, B.; Jahangiri, M.; Kumar, P.; Latif, M.T. Indoor air quality-induced respiratory symptoms of a hospital staff in Iran. Environ. Monit. Assess. 2019, 191, 50. [Google Scholar] [CrossRef]
- Vanker, A.; Barnett, W.; Workman, L.; Nduru, P.M.; Sly, P.D.; Gie, R.P.; Zar, H.J. Early-life exposure to indoor air pollution or tobacco smoke and lower respiratory tract illness and wheezing in African infants: A longitudinal birth cohort study. Lancet Planet. Health 2017, 1, e328–e336. [Google Scholar] [CrossRef]
- Franck, U.; Weller, A.; Roder, S.W.; Herberth, G.; Junge, K.M.; Kohajda, Y.; Bergen, M.V.; Kampczyk, U.R.; Diez, U.; Borte, M. Prenatal VOC exposure and redecoration are related to wheezing in early infancy. Environ. Int. 2014, 73, 393–401. [Google Scholar] [CrossRef]
- Fraga, S.; Ramos, E.; Martins, A.; Samudio, M.J.; Silva, G.; Guedes, J.; Fernandes, E.O.; Barros, H. Indoor air quality and respiratory symptoms in Porto schools. Rev. Port. Pneumol. 2008, 14, 487–507. [Google Scholar] [CrossRef]
- Norback, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ. 2017, 592, 153–160. [Google Scholar] [CrossRef]
- Araki, A.; Kawai, T.; Eitaki, Y.; Kanazawa, A.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; et al. Relationship between selected indoor volatile organic compounds, so-called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Sci. Total Environ. 2010, 408, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Lin, J.M.; Chen, Y.Y.; Chen, Y.C. Building-Related Symptoms among Office Employees Associated with Indoor Carbon Dioxide and Total Volatile Organic Compounds. Int. J. Environ. Res. Public Health 2015, 12, 5833–5845. [Google Scholar] [CrossRef]
- Park, S.A.; Gwak, S.; Choi, S. Assessment of occupational symptoms and chemical exposures for nail salon technicians in Daegu City, Korea. J. Prev. Med. Public Health 2014, 47, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Noguchi, M.; Tsuda, T.; Suzuki, E.; Takao, S.; Kashima, S.; Yanagisawa, Y. Does open-air exposure to volatile organic compounds near a plastic recycling factory cause health effects? J. Occup. Health 2012, 54, 79–87. [Google Scholar] [CrossRef]
- Takeda, M.; Saijo, Y.; Yuasa, M.; Kanazawa, A.; Araki, A.; Kishi, R. Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. Int. Arch. Occup. Environ. Health 2009, 82, 583–593. [Google Scholar] [CrossRef]
- Azuma, K.; Ikeda, K.; Kagi, N.; Yanagi, U.; Osawa, H. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. Sci. Total Environ. 2018, 616–617, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.J.; Black, M.S. Sensory irritation in mice exposed to emissions from indoor products. Am. Ind. Hyg. Assoc. J. 1995, 56, 794–803. [Google Scholar] [CrossRef]
- Venn, A.J.; Cooper, M.; Antoniak, M.; Laughlin, C.; Britton, J.; Lewis, S.A. Effects of volatile organic compounds, damp, and other environmental exposures in the home on wheezing illness in children. Thorax 2003, 58, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Araki, A.; Kanazawa, A.; Kawai, T.; Eitaki, Y.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; et al. The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci. Total Environ. 2012, 423, 18–26. [Google Scholar] [CrossRef][Green Version]
- Mendes, A.; Papoila, A.L.; Carreiro-Martins, P.; Bonassi, S.; Caires, I.; Palmeiro, T.; Aguiar, L.; Pereira, C.; Neves, P.; Mendes, D.; et al. The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto. Age Ageing 2016, 45, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Diez, U.; Rehwagen, M.; Kampczyk, U.R.; Wetzig, H.; Schulz, R.; Richter, M.; Lehmann, I.; Borte, M.; Herbarth, O. Redecoration of apartments promotes obstructive bronchitis in atopy risk infants—Results of the LARS Study. Int. J. Hyg. Environ. Health 2003, 206, 173–179. [Google Scholar] [CrossRef]
- Norback, D.; Bjornsson, E.; Janson, C.; Widstrom, J.; Boman, G. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup. Environ. Med. 1995, 52, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Diez, U.; Kroessner, T.; Rehwagen, M.; Richter, M.; Wetzig, H.; Schulz, R.; Borte, M.; Metzner, G.; Krumbiegel, P.; Herbarth, O. Effects of indoor painting and smoking on airway symptoms in atopy risk children in the first year of life results of the LARS-study. Leipzig Allergy High-Risk Children Study. Int. J. Hyg. Environ. Health 2000, 203, 23–28. [Google Scholar] [CrossRef]
- Hart, J.E. Invited commentary: Epidemiologic studies of the impact of air pollution on lung cancer. Am. J. Epidemiol. 2014, 179, 452–454. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, Z.F.; Zhang, H.; Zhang, X.M.; Liu, L.Y.; Li, Y.F.; Sun, W. Indoor occurrence and health risk of formaldehyde, toluene, xylene and total volatile organic compounds derived from an extensive monitoring campaign in Harbin, a megacity of China. Chemosphere 2020, 250, 126324. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Observatory Exposure to Ambient Air Pollution. 2016. Available online: https://www.who.int/gho/phe/outdoor_air_pollution/exposure/en/ (accessed on 2 October 2020).
- Bates, J.T.; Weber, R.J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M.J.; Sarnat, S.E.; Chang, H.H.; Mulholland, J.A.; et al. Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environ. Sci. Technol. 2015, 49, 13605–13612. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Torpy, F.R. Functional green wall development for increasing air pollutant phytoremediation: Substrate development with coconut coir and activated carbon. J. Hazard. Mater. 2018, 360, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Sinha, J.; Kumar, N. Mortality and Air Pollution Effects of Air Quality Interventions in Delhi and Beijing. Front. Environ. Sci. 2019, 7, 1–10. [Google Scholar] [CrossRef]
ID * | Ref. ID | Country | Study Year | Outcome Variable | Sample Size | Age (Year) | Effect Size |
---|---|---|---|---|---|---|---|
1 | [21] | France | 2011 | Asthma | 1012 | All ages | 0.05 |
2 | [22] | France | 2019 | Asthma | 109 | All ages | 0.87 |
9 | [23] | Australia | 2002 | Asthma | 192 | 1–18 | 0.00 |
10 | [24] | US | 2003 | Asthma | 88 | 1–18 | 0.11 |
11 | [25] | Australia | 1999 | Asthma | 148 | 1–18 | 0.15 |
12 | [26] | France | 2013 | Asthma | 95 | 1–18 | 0.56 |
13 | [27] | France | 2010 | Asthma | 114 | 1–18 | 1.09 |
14 | [28] | Sweden | 2010 | Asthma | 400 | 1–18 | 0.19 |
19 | [29] | France | 2012 | Asthma | 6590 | 1–18 | 0.09 |
20 | [30] | France | 2013 | Asthma | 897 | 18–60 | 0.50 |
21 | [31] | US | 2007 | Asthma | 550 | 18–60 | 0.22 |
22 | [32] | China | 2013 | Asthma | 268 | All ages | 0.44 |
23 | [33] | Finland | 2008 | Asthma | 137 | 1–18 | 0.48 |
26 | [34] | US | 2010 | Asthma | 1480 | All ages | 0.42 |
33 | [35] | France | 2013 | Asthma | 4209 | 1–18 | 0.27 |
37 | [36] | Japan | 2004 | Asthma | 317 | 18–60 | 0.68 |
38 | [37] | US | 2003 | Asthma | 24 | 1–18 | 0.32 |
40 | [38] | Argentina | 2009 | Asthma | 1183 | 1–18 | 0.01 |
42 | [39] | Japan | 2011 | Asthma | 393 | 60+ | 0.89 |
44 | [40] | Sweden | 2007 | Asthma | 1014 | 1–18 | 0.32 |
45 | [41] | Europe | 2020 | Asthma | 5175 | 1–18 | 0.46 |
48 | [42] | China | 2020 | Asthma | 120 | 18–60 | 0.16 |
49 | [43] | The Netherlands | 2017 | Asthma | 23 | All ages | 0.21 |
Asthma = effect size ~0.37; 95% CI = 0.25–0.49; n = 23 | |||||||
3 | [44] | Australia | 1995 | Wheezing | 863 | 1–18 | −0.03 |
8 | [45] | Canada | 2018 | Wheezing | 2900 | 60+ | 0.07 |
4 | [46] | UK | 2008 | Wheezing | 7162 | 1–18 | 0.16 |
16 | [47] | UK | 2006 | Wheezing | 200 | 1–18 | 0.17 |
18 | [48] | China | 2008 | Wheezing | 1993 | 1–18 | 0.10 |
25 | [49] | United Arab Emirates | 2012 | Wheezing | 1590 | All ages | 0.27 |
27 | [50] | Iran | 2019 | Wheezing | 456 | 18–60 | 0.69 |
28 | [51] | South Africa | 2017 | Wheezing | 1065 | 1–18 | 0.11 |
31 | [52] | Germany | 2014 | Wheezing | 465 | 1–18 | 0.76 |
41 | [53] | Portugal | 2008 | Wheezing | 1607 | 1–18 | 0.28 |
Wheezing = effect size ~0.26; 95% CI = 0.10–0.42; n = 10 | |||||||
6 | [54] | Malaysia | 2017 | TI | 462 | 1–18 | 0.39 |
7 | [55] | Japan | 2010 | TI | 120 | 60+ | 0.34 |
30 | [56] | China | 2015 | TI | 417 | 18–60 | 0.03 |
32 | [57] | Korea | 2014 | TI | 159 | 18–60 | 0.67 |
35 | [58] | Japan | 2012 | TI | 3950 | 18–60 | 0.53 |
36 | [59] | Japan | 2009 | TI | 343 | All ages | 0.19 |
43 | [60] | Japan | 2018 | TI | 107 | All ages | 0.12 |
46 | [61] | US | 1995 | TI | 4 | 1–18 | 0.17 |
Throat irritation = effect size ~0.31; 95% CI = 0.15–0.46; n = 8 | |||||||
15 | [62] | UK | 2003 | Rhinitis | 626 | 18–60 | 0.47 |
24 | [63] | Japan | 2012 | Rhinitis | 609 | All ages | 0.00 |
29 | [64] | Portugal | 2016 | Rhinitis | 143 | 60+ | 0.49 |
5 | [65] | US | 2003 | Bronchitis | 186 | 1–18 | 0.65 |
17 | [66] | Sweden | 1995 | SBD | 88 | 18–60 | 1.05 |
39 | [67] | Germany | 2000 | COPD | 649 | 1–18 | 0.40 |
34 | [68] | Canada | 2014 | Lung cancer | 445 | Others | 0.19 |
47 | [69] | China | 2020 | Lung cancer | 0 | Others | 0.18 |
Others = effect size ~0.43; 95% CI = 0.20–0.66; n = 8 |
Age Group (Year) | Asthma | Wheezing | Throat Irritation | Other | Total |
---|---|---|---|---|---|
1–18 | 13 | 7 | 2 | 2 | 24 |
18–60 | 4 | 1 | 3 | 2 | 10 |
60+ | 1 | 1 | 1 | 1 | 4 |
All ages (non-specific) | 5 | 1 | 2 | 1 | 9 |
Others | 0 | 0 | 0 | 2 | 2 |
Total | 23 | 10 | 8 | 8 | 49 |
Country Name | Effect Size (95% CI; n) |
---|---|
Australia | 0.04 (−0.07–0.15; 3) |
Japan | 0.39 (0.16–0.63; 7) |
France | 0.49 (0.20–0.78; 7) |
Canada | 0.13 (0.02–0.25; 2) |
Sweden | 0.52 (−0.01–1.05; 3) |
United Kingdom | 0.27 (0.07–0.47; 3) |
United States | 0.36 (0.21–0.50; 6) |
Malaysia | 0.39 (NA, 1) |
China | 0.28 (0.10–0.45; 5) |
Finland | 0.48 (NA, 1) |
United Arab Emirates | 0.27 (NA, 1) |
Iran | 0.69 (NA, 1) |
South Africa | 0.11 (NA, 1) |
Portugal | 0.39 (0.19–0.59; 2) |
Germany | 0.58 (0.23–0.93; 2) |
Korea | 0.67 (NA, 1) |
Europe | 0.46 (NA, 1) |
Argentina | 0.01 (NA, 1) |
The Netherlands | 0.52 (NA, 1) |
Total | 0.37 (0.29–0.44; 49) |
Disease/Symptoms | Age Group | All Ages (Non-Specific) | ||
---|---|---|---|---|
1–18 | 18–60 | 60+ | ||
Asthma | 0.31 (0.15–0.47; 13) | 0.39 (0.15–0.63; 4) | 0.89 (NA, 1) | 0.40 (0.13–0.67; 5) |
Wheezing | 0.22 (0.03–0.41; 7) | 0.69 (NA, 1) | 0.07 (NA, 1) | 0.27 (NA, 1) |
Throat Irritation | 0.28 (0.07–0.49; 2) | 0.41 (0.03–0.79; 3) | 0.34 (NA, 1) | 0.15 (0.09–0.22; 2) |
Other | 0.52 (0.28–0.77; 2) | 0.76 (0.19–1.33; 2) | 0.49 (NA, 1) | - |
Total | 0.30 (0.19–0.41; 24) | 0.50 (0.31–0.69; 10) | 0.45 (0.11–0.78; 4) | 0.29 (0.11–0.46; 9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alford, K.L.; Kumar, N. Pulmonary Health Effects of Indoor Volatile Organic Compounds—A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 1578. https://doi.org/10.3390/ijerph18041578
Alford KL, Kumar N. Pulmonary Health Effects of Indoor Volatile Organic Compounds—A Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(4):1578. https://doi.org/10.3390/ijerph18041578
Chicago/Turabian StyleAlford, Kyle L., and Naresh Kumar. 2021. "Pulmonary Health Effects of Indoor Volatile Organic Compounds—A Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 4: 1578. https://doi.org/10.3390/ijerph18041578
APA StyleAlford, K. L., & Kumar, N. (2021). Pulmonary Health Effects of Indoor Volatile Organic Compounds—A Meta-Analysis. International Journal of Environmental Research and Public Health, 18(4), 1578. https://doi.org/10.3390/ijerph18041578