Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases Identification
- The daily incidence rate, defined as the number of new cases over the considered population, and used to measure the frequency with which the disease occurs daily.
- The daily prevalence rate, defined as the number of infected cases over the considered population sampled every day, and used to evaluate the spreading of the virus
- The growth factor, defined as the factor by which a quantity multiplies itself over time:
2.2. Meteorological Data
2.3. Air Pollutants Data
2.4. Data Analysis
3. Results
3.1. Spatial Analysis
3.2. Temporal Analysis
- PM10 > 50 μg/m3
- PM2.5 > 50 μg/m3
- 75% < RH < 85%
- 4 °C < AT < 8 °C
- −0.5 < NAA < 0.5
4. Discussion
- (i).
- Droplets emission and genesis of viral bioaerosols,
- (ii).
- Transmission and diffusion of viral bioaerosols,
- (iii).
- Retention of infectivity over time, and
- (iv).
- Probability of infection for a given exposure dose.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, I.T.; Li, Y.; Wong, T.W.; Tam, W.; Chan, A.T.; Lee, J.H.; Leung, D.Y.; Ho, T. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 2004, 350, 1731–1739. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Christian, M.D.; Loutfy, M.; McDonald, L.C.; Martinez, K.F.; Ofner, M.; Wong, T.; Wallington, T.; Gold, W.L.; Mederski, B.; Green, K.; et al. SARS Investigation Team. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg. Infect. Dis. 2004, 10, 287–293. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Istituto Nazionale di Statistica and Istituto Superiore di Sanità. Impatto dell’epidemia COVID-19 sulla mortalità totale della popolazione residente periodo gennaio-maggio. 2020. Available online: https://www.epicentro.iss.it/coronavirus/pdf/Rapp_Istat_Iss_3Giugno.pdf (accessed on 15 October 2020).
- Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; Munnink, B.B.O.; de Meulder, D.; van Amerongen, G.; van den Brand, J.; Okba, N.M.A.; et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 2020, 368, 1012–1015. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deng, W.; Bao, L.; Gao, H.; Xiang, Z.; Qu, Y.; Song, Z.; Gong, S.; Liu, J.; Liu, J.; Yu, P.; et al. Rhesus macaques can be effectively infected with SARS-CoV-2 via ocular conjunctival route. bioRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef][Green Version]
- Lu, C.W.; Liu, X.F.; Jia, Z.F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet 2020, 395, e39. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.S.; Liu, L.; Zhang, Z. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis. 2020, 26, 1320–1323. [Google Scholar] [CrossRef]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef][Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef][Green Version]
- Burke, R.M.; Midgley, C.M.; Dratch, A.; Fenstersheib, M.; Haupt, T.; Holshue, M.; Ghinai, I.; Jarashow, M.C.; Lo, J.; McPherson, T.D.; et al. Active Monitoring of Persons Exposed to Patients with Confirmed COVID-19—United States, January–February 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 245–246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- World Health Organization. Infection Prevention and Control of Epidemic- and Pandemic-Prone Acute Respiratory Infections in Health Care; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Simoni, M.; Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Viegi, G. Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis. 2015, 7, 34–45. [Google Scholar] [PubMed]
- Ségala, C.; Poizeau, D.; Mesbah, M.; Willems, S.; Maidenberg, M. Winter air pollution and infant bronchiolitis in Paris. Environ. Res. 2008, 106, 96–100. [Google Scholar] [CrossRef]
- Vandini, S.; Corvaglia, L.; Alessandroni, R.; Aquilano, G.; Marsico, C.; Spinelli, M.; Lanari, M.; Faldella, G. Respiratory syncytial virus infection in infants and correlation with meteorological factors and air pollutants. Ital. J. Pediatr. 2013, 39, 1. [Google Scholar] [CrossRef][Green Version]
- Martelletti, L.; Martelletti, P. Air pollution and the novel Covid-19 disease: A putative disease risk factor. SN Compr. Clin. Med. 2020, 15, 1–5. [Google Scholar] [CrossRef][Green Version]
- Brandt, E.B.; Beck, A.F.; Mersha, T.B. Air pollution, racial disparities, and COVID-19 mortality. J. Allergy Clin. Immunol. 2020, 146, 61–63. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef][Green Version]
- Fannin, K.F.; Vana, S.T.; Jakubowski, W. Effect of activated sludge waste-water treatment plant on ambient air densities of aerosols containing bacteria and viruses. Appl. Environ. Microbiol. 1985, 49, 1191–1196. [Google Scholar]
- Fattal, B.; Margalith, M.; Shuval, H.I.; Wax, Y.; Morag, A. Viral antibodies in agricultural populations exposed to aerosols from wastewater irrigation during a viral disease outbreak. Am. J. Epidemiol. 1987, 125, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Pfirrmann, A.; Bossche, G.V. Occurrence and isolation of airborne human enteroviruses from waste disposal and utilization plants. Zent. Hyg. Umweltmed. 1994, 196, 38–51. [Google Scholar]
- Alvarez, A.; Buttner, M.P.; Stetzenbach, L. PCR for bioaerosol monitoring: Sensitivity and environmental interference. Appl. Environ. Microbiol. 1995, 61, 3639–3644. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Teltsch, B.; Kedmi, S.; Bonnet, L.; Borenzstajn-Rotem, Y.; Katzenelson, E. Isolation and identification of pathogenic microorganisms at wastewater-irrigated fields: Ratios in air and wastewater. Appl. Environ. Microbiol. 1980, 39, 1183–1190. [Google Scholar] [CrossRef][Green Version]
- Bosch, A.; Pintó, R.M.; Abad, F.X. Survival and Transport of Enteric Viruses in the Environment. In Viruses in Foods; Goyal, S.M., Ed.; Food Microbiology and Food Safety; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Hemmes, J.H.; Winkler, K.C.; Kool, S.M. Virus survival as a seasonal factor in influenza and poliomyelitis. Nature 1960, 188, 430–438. [Google Scholar] [CrossRef]
- Harper, G.J. Airborne microorganisms: Survival tests with four viruses. J. Hyg. 1961, 59, 479–486. [Google Scholar]
- Moe, K.; Harper, G.J. The effect of relative humidity and temperature on the survival of bovine rotavirus in aerosol. Arch. Virol. 1983, 76, 211–216. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Brunner, A.H.; Sattar, S.A.; Nair, R.C.; Johnson-Lussenburg, C.M. Survival characteristics of airborne human coronavirus 229E. J. Gen. Virol. 1985, 66, 2743–2748. [Google Scholar] [CrossRef]
- Sattar, S.A.; Ijaz, M.K.; Johnson-Lussenburg, C.M.; Springthorpe, V.S. Effect of relative humidity on the airborne survival of rotavirus SA11. Appl. Environ. Microbiol. 1984, 47, 879–881. [Google Scholar] [CrossRef][Green Version]
- Akers, T.G.; Hatch, M.T. Survival of a picornavirus and its infectious ribonucleic acid after aerosolization. Appl. Microbiol. 1968, 16, 1811–1813. [Google Scholar] [CrossRef]
- Miller, W.S.; Artenstein, M.S. Aerosol stability of three acute respiratory disease viruses. Proc. Soc. Exp. Biol. Med. 1967, 125, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Elazhary, M.A.; Derbyshire, J.B. Effect of temperature, relative humidity and medium on the aerosol stability of infectious bovine rhinotracheitis virus. Can. J. Comp. Med. 1979, 43, 158–167. [Google Scholar] [PubMed]
- McGeady, M.L.; Siak, J.S.; Crowell, R.L. Survival of coxsackie virus B3 under diverse environmental conditions. Appl. Environ. Microbiol. 1979, 37, 972–977. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reagan, K.J.; McGeady, M.L.; Crowell, R.L. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl. Environ. Microbiol. 1981, 41, 618–627. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [PubMed]
- Groulx, N.; Urch, B.; Duchaine, C.; Mubareka, S.; Scott, J.A. The Pollution Particulate Concentrator (PoPCon): A platform to investigate the effects of particulate air pollutants on viral infectivity. Sci. Total Environ. 2018, 628, 1101–1107. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef][Green Version]
- Epicentro. L’epidemiologia per la sanità pubblica. Available online: https://www.epicentro.iss.it/coronavirus/ (accessed on 15 October 2020).
- Protezione Civile. Available online: http://www.protezionecivile.gov.it/ (accessed on 15 October 2020).
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef][Green Version]
- Stumm, W.; Schnoor, J.L. Atmospheric Deposition: Impacts of Acids on Lakes. In Physics and Chemistry of Lakes; Lerman, A., Imboden, D.M., Gat, J.R., Eds.; Springer: Berlin, Germany, 1995; pp. 192–193. [Google Scholar]
- Mircea, M.; Stefan, S.; Fuzzi, S. Precipitation scavenging coefficient: Influence of measured aerosol and raindrop size distributions. Atmos. Environ. 2000, 34, 5169–5517. [Google Scholar] [CrossRef]
- Duhanyan, N.; Roustan, Y. Below-cloud scavenging by rain of atmospheric gases and particulates. Atmos. Environ. 2011, 45, 7201–7217. [Google Scholar] [CrossRef]
- Boen, Z.; Limin, J.; Gang, X.; Suli, Z.; Xin, T.; Yue, Z.; Gong, C. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorol. Atmos. Phys. 2018, 130, 383–392. [Google Scholar]
- Jones, A.M.; Harrison, R.M.; Baker, J. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmos. Environ. 2010, 44, 1682–1690. [Google Scholar]
- Elminir, H.K. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 2005, 350, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A. Open Access Government. Contaminants and Infections: A Link to Explore. Available online: https://www.openaccessgovernment.org/contaminants-and-infections-a-link-to-explore/85701/ (accessed on 15 October 2020).
- Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020, 38, 1–9. [Google Scholar]
- Sopori, M. Effects of cigarette smoke on the immune system. Nat. Rev. Immunol. 2002, 2, 372–377. [Google Scholar] [CrossRef]
- Kaminogawa, S.; Nanno, M. Modulation of immune functions by foods. Evid. Based Complement Alternat. Med. 2004, 1, 241–250. [Google Scholar] [CrossRef]
- Choi, J.; Oh, J.Y.; Lee, Y.S.; Min, K.H.; Hur, G.Y.; Lee, S.Y.; Kang, K.H.; Shim, J.J. Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: Particulate matter is hazardous. Int. J. Chron Obstr. Pulm. Dis. 2018, 13, 1053–1059. [Google Scholar] [CrossRef][Green Version]
- Jo, E.J.; Lee, W.S.; Jo, H.Y.; Kim, C.H.; Eom, J.S.; Mok, J.H.; Kim, M.H.; Lee, K.; Kim, K.U.; Lee, M.K.; et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar]
- Nenna, R.; Evangelisti, M.; Frassanito, A.; Scagnolari, C.; Pierangeli, A.; Antonelli, G.; Nicolai, A.; Arima, S.; Moretti, C.; Papoff, P.; et al. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study. Environ. Res. 2017, 158, 188–193. [Google Scholar] [CrossRef]
- Jo, Y.S.; Lim, M.N.; Han, Y.J.; Kim, W.J. Epidemiological study of PM2. 5 and risk of COPD-related hospital visits in association with particle constituents in Chuncheon, Korea. Int. J. Chron. Obstr. Pulm. Dis. 2018, 13, 299–307. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wei, T.; Tang, M. Biological effects of airborne fine particulate matter (PM2. 5) exposure on pulmonary immune system. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Piazzalunga-Expert, A. Evaluation of the potential relationship between Particulate Matter (PM) pollution and COVID-19 infection spread in Italy. Mimeo 2020. [Google Scholar]
- European Environment Agency. Air Quality in Europe; EEA Report No 10/2019; European Environment Agency: Copenhagen, Denmark, 2019.
- Fattorini, D.; Regoli, F. Role of the atmospheric pollution in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Liu, X. Aer odynamic characteristics and RNA concentration of SARS-CoV-2 aerosol in Wuhan hospitals during COVID-19 outbreak. bioRxiv 2020. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Baribieri, P.; Perrone, M.G.; Borelli, M.; Ruscio, M. SARS-Cov-2 RNA Found on Particulate Matter of Bergamo in Northern Italy: First Preliminary Evidence. Environ. Res. 2020, 188, 109754. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 2006, 16, 335–347. [Google Scholar] [CrossRef][Green Version]
- Leung, D.Y. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015, 2, 69. [Google Scholar]
- Travaglio, M.; Popovic, R.; Yu, Y.; Leal, N.; Martins, L.M. Links between air pollution and COVID-19 in England. medRxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Pansini, R.; Fornacca, D. COVID-19 higher induced mortality in Chinese regions with lower air quality. medRxiv 2020. [Google Scholar] [CrossRef]
- Cadotte, M. Early evidence that COVID-19 government policies reduce urban air pollution. Eartharxiv 2020. [Google Scholar] [CrossRef][Green Version]
- Erisman, J.W.; Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 2004, 129, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Wilkosz, I. Acid-Base Equlibria in Open Atmospheric Gas-Liquid Systems. Polish J. Environ. Stud. 2005, 14, 375–383. [Google Scholar]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 2010, 109, 388–397. [Google Scholar] [CrossRef][Green Version]
- Mi, X.; Bromley, E.; Joshi, P.U.; Long, F.; Heldt, C.L. Virus isoelectric point determination using single-particle chemical force microscopy. Langmuir 2020, 36, 370–378. [Google Scholar] [CrossRef]
ρ | PM10 | PM2.5 | O3 | NO2 | NO | NH3 | CO | SO2 | NAA |
---|---|---|---|---|---|---|---|---|---|
Prevalence of infected population | 0.54 | 0.51 | −0.03 | 0.31 | 0.26 | 0.75 | 0.51 | 0.05 | 0.27 |
Z-Score | 0.75 | 0.76 | 0.78 | 0.79 | 0.72 | 0.82 | 0.81 | 0.82 | 0.87 |
Lag (Days) | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
Bergamo | −0.13 | 0.20 | 0.45 | 0.26 | 0.20 | −0.14 | −0.40 |
Brescia | −0.02 | 0.07 | 0.28 | 0.34 | 0.26 | −0.15 | −0.43 |
Como | −0.24 | 0.25 | 0.60 | 0.11 | 0.01 | −0.13 | −0.35 |
Cremona | −0.09 | 0.08 | 0.28 | 0.29 | 0.28 | −0.12 | −0.40 |
Lecco | −0.25 | 0.21 | 0.56 | 0.25 | 0.03 | −0.14 | −0.38 |
Lodi | −0.09 | 0.12 | 0.28 | 0.17 | 0.20 | −0.13 | −0.40 |
Mantova | 0.00 | 0.03 | 0.31 | 0.39 | 0.30 | −0.15 | −0.38 |
Milano | −0.17 | 0.20 | 0.49 | 0.15 | −0.04 | −0.22 | −0.41 |
Monza | −0.20 | 0.23 | 0.59 | 0.24 | −0.04 | −0.19 | −0.37 |
Pavia | −0.07 | 0.27 | 0.27 | 0.03 | −0.03 | −0.21 | −0.31 |
Sondrio | −0.31 | −0.05 | 0.27 | 0.09 | 0.28 | 0.02 | −0.21 |
Varese | −0.30 | 0.20 | 0.57 | 0.13 | 0.08 | −0.15 | −0.37 |
Lag (Days) | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
Bergamo | −0.15 | 0.20 | 0.47 | 0.28 | 0.20 | −0.14 | −0.40 |
Brescia | −0.14 | 0.09 | 0.43 | 0.35 | 0.30 | −0.13 | −0.42 |
Como | −0.30 | 0.20 | 0.53 | 0.09 | 0.11 | −0.12 | −0.34 |
Cremona | −0.05 | 0.12 | 0.30 | 0.26 | 0.27 | −0.14 | −0.43 |
Lecco | −0.30 | 0.23 | 0.52 | 0.16 | 0.14 | −0.13 | −0.36 |
Lodi | −0.09 | 0.17 | 0.27 | 0.17 | 0.19 | −0.16 | −0.42 |
Mantova | −0.04 | 0.02 | 0.33 | 0.41 | 0.34 | −0.18 | −0.38 |
Milano | −0.18 | 0.22 | 0.54 | 0.17 | −0.01 | −0.23 | −0.43 |
Monza | −0.21 | 0.24 | 0.61 | 0.25 | −0.04 | −0.22 | −0.38 |
Pavia | −0.09 | 0.29 | 0.33 | 0.06 | 0.04 | −0.19 | −0.36 |
Sondrio | −0.33 | −0.09 | 0.32 | 0.11 | 0.24 | −0.01 | −0.21 |
Varese | −0.32 | 0.17 | 0.61 | 0.15 | 0.06 | −0.18 | −0.38 |
Lag (Days) | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|
Bergamo | 0.35 | 0.09 | 0.09 | 0.10 | 0.14 | 0.16 | 0.03 |
Brescia | 0.40 | 0.04 | −0.12 | −0.19 | −0.01 | 0.09 | 0.20 |
Como | −0.19 | 0.21 | 0.56 | 0.30 | 0.07 | −0.09 | −0.26 |
Cremona | 0.36 | −0.04 | −0.18 | −0.18 | 0.00 | 0.18 | 0.15 |
Lecco | −0.11 | 0.16 | 0.33 | 0.45 | 0.36 | −0.02 | −0.28 |
Lodi | 0.24 | 0.01 | −0.03 | −0.04 | 0.00 | 0.13 | −0.04 |
Mantova | 0.21 | −0.09 | −0.19 | −0.14 | 0.14 | 0.07 | 0.23 |
Milano | 0.04 | 0.10 | 0.32 | 0.16 | −0.03 | −0.06 | −0.11 |
Monza | 0.05 | 0.25 | 0.38 | 0.33 | 0.13 | −0.06 | −0.13 |
Pavia | 0.07 | 0.10 | 0.05 | −0.04 | 0.04 | −0.18 | −0.17 |
Sondrio | −0.11 | 0.26 | 0.36 | 0.16 | 0.39 | 0.00 | −0.17 |
Varese | −0.15 | 0.21 | 0.45 | 0.03 | −0.04 | −0.08 | −0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragone, R.; Licciardi, G.; Grasso, G.; Del Gaudio, C.; Chanussot, J. Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area. Int. J. Environ. Res. Public Health 2021, 18, 1226. https://doi.org/10.3390/ijerph18031226
Dragone R, Licciardi G, Grasso G, Del Gaudio C, Chanussot J. Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area. International Journal of Environmental Research and Public Health. 2021; 18(3):1226. https://doi.org/10.3390/ijerph18031226
Chicago/Turabian StyleDragone, Roberto, Giorgio Licciardi, Gerardo Grasso, Costantino Del Gaudio, and Jocelyn Chanussot. 2021. "Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area" International Journal of Environmental Research and Public Health 18, no. 3: 1226. https://doi.org/10.3390/ijerph18031226