Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Attitudes towards Risk Prediction
3.2. Motives
3.2.1. Motives for an Approval of Predictive Measures
3.2.2. Motives for a Conditional Approval of Predictive Measures
3.2.3. Motives for a Rejection of Predictive Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huys, Q.J.M.; Maia, T.V.; Frank, M.J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 2016, 19, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Solis, M. Prevention: Before the break. Nat. Cell Biol. 2014, 508, S12–S13. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; Davis, K. ‘Big data’ in mental health research: Current status and emerging possibilities. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 1055–1072. [Google Scholar] [CrossRef]
- Chung, Y.; Allswede, D.; Addington, J.; Bearden, C.E.; Kelsven, S.; Cornblatt, B.; Mathalon, D.H.; McGlashan, T.; Perkins, D.; Seidman, L.J.; et al. Cortical abnormalities in youth at clinical high-risk for psychosis: Findings from the NAPLS2 cohort. NeuroImage Clin. 2019, 23, 101862. [Google Scholar] [CrossRef] [PubMed]
- Tognin, S.; Van Hell, H.H.; Merritt, K.; Rossum, I.W.-V.; Bossong, M.G.; Kempton, M.J.; Modinos, G.; Fusar-Poli, P.; Mechelli, A.; Dazzan, P.; et al. Towards Precision Medicine in Psychosis: Benefits and Challenges of Multimodal Multicenter Studies—PSYSCAN: Translating Neuroimaging Findings From Research into Clinical Practice. Schizophr. Bull. 2020, 46, 432–441. [Google Scholar] [CrossRef]
- Koutsouleris, N.; Kambeitz-Ilankovic, L.; Ruhrmann, S.; Rosen, M.; Ruef, A.; Dwyer, D.B.; Paolini, M.; Chisholm, K.; Kambeitz, J.; Haidl, T.; et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A multimodal, multisite machine learning analysis. JAMA Psychiatry 2018, 75, 1156–1172. [Google Scholar] [CrossRef]
- Klosterkotter, J.; Schultze-Lutter, F.; Bechdolf, A.; Ruhrmann, S. Prediction and prevention of schizophrenia: What has been achieved and where to go next? World Psychiatry 2011, 10, 165–174. [Google Scholar] [CrossRef]
- Bernardini, F.; Attademo, L.; Cleary, S.D.; Luther, C.; Shim, R.S.; Quartesan, R.; Compton, M.T. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses. J. Clin. Psychiatry 2017, 78, 572–583. [Google Scholar] [CrossRef]
- Ruhrmann, S.; Schultze-Lutter, F.; Schmidt, S.J.; Kaiser, N.; Klosterkötter, J. Prediction and prevention of psychosis: Current progress and future tasks. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 9–16. [Google Scholar] [CrossRef]
- Radden, J. Public Mental Health and Prevention. Public Health Ethic 2017, 11, 126–138. [Google Scholar] [CrossRef]
- Jorm, A.F.; Mulder, R.T. Prevention of mental disorders requires action on adverse childhood experiences. Aust. N. Z. J. Psychiatry 2018, 52, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Knoppers, B.M.; Thorogood, A. Ethics and Big Data in health. Curr. Opin. Syst. Biol. 2017, 4, 53–57. [Google Scholar] [CrossRef]
- Lawrie, S.M.; Fletcher-Watson, S.; Whalley, H.C.; McIntosh, A.M. Predicting major mental illness: Ethical and practical considerations. BJPsych Open 2019, 5, e30. [Google Scholar] [CrossRef]
- Sørensen, K.; Broucke, S.V.D.; Pelikan, J.M.; Fullam, J.; Doyle, G.; Slonska, Z.; Kondilis, B.; Stoffels, V.; Osborne, R.H.; Brand, H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013, 13, 948. [Google Scholar] [CrossRef]
- Nutbeam, D. Health literacy as a public health goal: A challenge for contemporary health education and communication strategies into the 21st century. Health Promot. Int. 2000, 15, 259–267. [Google Scholar] [CrossRef]
- Illės, F.; Rietz, C.; Fuchs, M.; Ohlraun, S.; Prell, K.; Rudinger, G.; Maier, W.; Rietschel, M. Einstellung zu psychiatrisch-genetischer Forschung und prädiktiver Diagnostik. Ethik Med. 2003, 15, 268–281. [Google Scholar] [CrossRef]
- Mantell, P.K.; Baumeister, A.; Christ, H.; Ruhrmann, S.; Woopen, C. Peculiarities of health literacy in people with mental disorders: A cross-sectional study. Int. J. Soc. Psychiatry 2019, 66, 10–22. [Google Scholar] [CrossRef]
- Hautzinger, M.; Keller, F.; Kühner, C. Das Beck Depressionsinventar II: Deutsche Bearbeitung und Handbuch zum BDI II [The Beck Depression Inventory II: German Processing and Handbook for the BDI II]; Harcourt Test Services: Frankfurt, Germany, 2006. [Google Scholar]
- Green, J.; Thorogood, N. Qualitative Methods for Health Research, 4th ed.; SAGE Publications Ltd.: London, UK, 2004; ISBN 978-1473997110. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse. Grundlagen und Techniken, 12th ed.; Beltz (Beltz Pädagogik): Weinheim, Germany, 2015; Available online: http://content-select.com/index.php?id=bib_view&ean=9783407293930 (accessed on 15 July 2020).
- Flick, U. An Introduction to Qualitative Research, 6th ed.; Sage Publications Ltd.: London, UK, 2018; p. 459. ISBN 978-1-5264-4564-3. [Google Scholar]
- Guest, G.; Namey, E.; McKenna, K. How Many Focus Groups Are Enough? Building an Evidence Base for Nonprobability Sample Sizes. Field Methods 2016, 29, 3–22. [Google Scholar] [CrossRef]
- Flick, U. Qualitative Meta-Analysis. In The SAGE Handbook of Qualitative Data Analysis; Sage Publications Ltd.: London, UK, 2013; pp. 485–487. ISBN 978-1-4462-0898-4. [Google Scholar]
- VERBI Software. MAXQDA 2018. Software. 2017. Available online: maxqda.com (accessed on 9 December 2020).
- Rädiker, S.; Kuckartz, U. Analyse Qualitativer Daten mit MAXQDA; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; ISBN 978-3-658-22095-2. [Google Scholar]
- Clausen, W.; Watanabe-Galloway, S.; Baerentzen, M.B.; Britigan, D.H. Health Literacy Among People with Serious Mental Illness. Commun. Ment. Health J. 2016, 52, 399–405. [Google Scholar] [CrossRef]
- Friis, K.; Pedersen, M.H.; Aaby, A.; Lasgaard, M.; Maindal, H.T. Impact of low health literacy on healthcare utilization in individuals with cardiovascular disease, chronic obstructive pulmonary disease, diabetes and mental disorders. A Danish population-based 4-year follow-up study. Eur. J. Public Health 2020, 30, 866–872. [Google Scholar] [CrossRef]
- Degan, T.J.; Kelly, P.J.; Robinson, L.D.; Deane, F.P.; Wolstencroft, K.; Turut, S.; Meldrum, R. Health literacy in people living with mental illness: A latent profile analysis. Psychiatry Res. 2019, 280, 112499. [Google Scholar] [CrossRef] [PubMed]
- Blakeslee, S.B.; McCaskill-Stevens, W.; Parker, P.A.; Gunn, C.M.; Bandos, H.; Bevers, T.B.; Battaglia, T.A.; Fagerlin, A.; Müller-Nordhorn, J.; Holmberg, C. Deciding on breast cancer risk reduction: The role of counseling in individual decision-making—A qualitative study. Patient Educ. Couns. 2017, 100, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.; Heeley, E. Perceptions of risk: Understanding cardiovascular disease. Health Policy Politi de Sante 2010, 3, 49–60. [Google Scholar] [CrossRef]
- Markowitz, S.M.; Park, E.R.; Delahanty, L.M.; O’Brien, K.E.; Grant, R.W. Perceived Impact of Diabetes Genetic Risk Testing Among Patients at High Phenotypic Risk for Type 2 Diabetes. Diabetes Care 2011, 34, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Anglin, D.M.; Greenspoon, M.I.; Lighty, Q.; Corcoran, C.M.; Yang, L.H. Spontaneous labelling and stigma associated with clinical characteristics of peers ‘at-risk’ for psychosis. Early Interv. Psychiatry 2013, 8, 247–252. [Google Scholar] [CrossRef]
- Schultze-Lutter, F.; Michel, C.; Klosterkötter, J. Nutzen-Risiko-Abschätzung bei der Prävention psychischer Störungen. In Handbuch Präventive Psychiatrie. Forschung—Lehre—Versorgung, 1st ed.; Klosterkötter, J., Maier, W., Eds.; Schattauer: Stuttgart, Germany, 2017; pp. 399–417. ISBN 978-3-608-43050-9. [Google Scholar]
- Rüsch, N.; Corrigan, P.; Heekeren, K.; Theodoridou, A.; Dvorsky, D.; Metzler, S.; Mueller, M.; Walitza, S.; Rossler, W. Well-Being Among Persons at Risk of Psychosis: The Role of Self-Labeling, Shame, and Stigma Stress. Psychiatr. Serv. 2014, 65, 483–489. [Google Scholar] [CrossRef]
- Rüsch, N.; Heekeren, K.; Theodoridou, A.; Mueller, M.; Corrigan, P.; Mayer, B.; Metzler, S.; Dvorsky, D.; Walitza, S.; Rossler, W. Stigma as a stressor and transition to schizophrenia after one year among young people at risk of psychosis. Schizophr. Res. 2015, 166, 43–48. [Google Scholar] [CrossRef]
- Lawson, N.D. “To Be a Good Lawyer, One Has to Be a Healthy Lawyer”: Lawyer Well-Being, Discrimination, and Discretionary Systems of Discipline. SSRN Electron. J. 2020, 34. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy Rule. In Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health through Research, 1st ed.; Nass, S.J., Gostin, L.O., Eds.; National Academies Press (US): Washington, DC, USA, 2009; Volume 80. [Google Scholar]
- Whiting, P.; Davenport, C.; Jameson, C.; Burke, M.; Sterne, J.A.C.; Hyde, C.; Ben-Shlomo, Y. How well do health professionals interpret diagnostic information? A systematic review. BMJ Open 2015, 5, e008155. [Google Scholar] [CrossRef]
Study Participants (N = 269) | |
Age, years, mean (SD) | 24.75 (5.3) |
(min–max) | (15 to 41 years) |
≤18 years, no. (%) | 21 (7.8) |
19 to 25 years, no. (%) | 139 (51.7) |
26 to 30 years, no. (%) | 69 (25.7) |
31 to 41 years, no. (%) | 40 (14.9) |
n = 269 | |
Sex | |
Female, no. (%) | 105 (39.0) |
Male, no. (%) No information | 163 (60.6) 1 (0.4) |
n = 269 | |
Educational degree | |
No degree/lower secondary education (“Hauptschulabschluss”), no. (%) | 25 (9.3) |
Medium secondary education (“Mittlere Reife”), no. (%) | 58 (21.6) |
Upper secondary education (“(Fach-) Hochschulreife”), no. (%) | 133 (49.4) |
≥ University degree, no. (%) Unknown | 52 (19.3) 1 (0.4) |
n = 269 | |
Migration background | |
Yes, no. (%) No, no. (%) Not specified by participant | 126 (46.8) 105 (39.0) 38 (14.2) |
n = 269 | |
Psychopathology (according to ICD-10) 1 | |
Depressive disorders, no. (%) | 104 (38.6) |
Schizophrenia, schizotypal and delusional disorders, no. (%) | 48 (17.8) |
Neurotic, stress-related and somatoform disorders, no. (%) | 37 (13.8) |
Others No diagnosis unclear | 45 (16.7) 6 (2.2) 29 (10.8) |
n = 269 | |
Increased risk for psychosis (yes), no (%) | 56 (20.8) n = 269 |
Level of depression (according to BDI-II) 2 | |
No depression (or remitted) (scores 0–13), no. (%) | 72 (29.3) |
Mild depression (scores 14–19), no. (%) | 38 (15.5) |
Moderate depression (scores 20–28), no. (%) | 77 (31.3) |
Severe depression (scores 29–63), no. (%) | 59 (24.0) |
n = 246 | |
Level of Health Literacy (according to HLS-EU-Q47) 3 | |
General HL, M(SD) | 31.25 (07.15) |
n = 267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantell, P.K.; Baumeister, A.; Ruhrmann, S.; Janhsen, A.; Woopen, C. Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach. Int. J. Environ. Res. Public Health 2021, 18, 1036. https://doi.org/10.3390/ijerph18031036
Mantell PK, Baumeister A, Ruhrmann S, Janhsen A, Woopen C. Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach. International Journal of Environmental Research and Public Health. 2021; 18(3):1036. https://doi.org/10.3390/ijerph18031036
Chicago/Turabian StyleMantell, Pauline Katharina, Annika Baumeister, Stephan Ruhrmann, Anna Janhsen, and Christiane Woopen. 2021. "Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach" International Journal of Environmental Research and Public Health 18, no. 3: 1036. https://doi.org/10.3390/ijerph18031036
APA StyleMantell, P. K., Baumeister, A., Ruhrmann, S., Janhsen, A., & Woopen, C. (2021). Attitudes towards Risk Prediction in a Help Seeking Population of Early Detection Centers for Mental Disorders—A Qualitative Approach. International Journal of Environmental Research and Public Health, 18(3), 1036. https://doi.org/10.3390/ijerph18031036