Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Robotic System 2 (R2S™)
2.3. Microorganisms
2.4. In Vitro UV-C Irradiation and Photoreactivation
2.5. In Vitro Effect of UV-C on Pathogens Layered on Non-Porous Surfaces (Glass, Plastic, Steel)
2.6. Comparison of Mobile UV-C Irradiation and Conventional Disinfection Procedure
2.7. Statistical Analysis
3. Results
3.1. R2S UV-C Irradiation Efficacy Compared to Manual Disinfection
3.2. Bacterial Inactivation and Photoreactivation Test of Static UV-C Irradiation
3.3. Bacterial Inactivation of Static UV-C Irradiation on Different Materials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018—Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); European Centre for Disease Prevention and Control: Solna Municipality, Sweden, 2019. [Google Scholar]
- Gastmeier, P. From ‘one size fits all’ to personalized infection prevention. J. Hosp. Infect. 2020, 104, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Casini, B.; Tuvo, B.; Cristina, M.L.; Spagnolo, A.M.; Totaro, M.; Baggiani, A.; Privitera, G.P. Evaluation of an Ultraviolet C (UVC) Light-Emitting Device for Disinfection of High Touch Surfaces in Hospital Critical Areas. Int. J. Environ. Res. Public Health 2019, 16, 3572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penno, K.; Jandarov, R.A.; Sopirala, M.M. Effect of automated ultraviolet C-emitting device on decontamination of hospital rooms with and without real-time observation of terminal room disinfection. Am. J. Infect. Control 2017, 45, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Cadnum, J.L.; Jencson, A.L.; Gestrich, S.A.; Livingston, S.H.; Karaman, B.A.; Benner, K.; Wilson, B.M.; Donskey, C.J. A comparison of the efficacy of multiple ultraviolet light room decontamination devices in a radiology procedure room. Infect. Control Hosp. Epidemiol. 2019, 40, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Cui, C.; Seok, H.; Bae, J.Y.; Jeon, J.H.; Lee, G.E.; Choi, W.S.; Park, M.S.; Park, D.W. Feasibility of ultraviolet light-emitting diode irradiation robot for terminal decontamination of COVID-19 patient rooms. Infect. Control Hosp. Epidemiol. 2021, 9, 1–25. [Google Scholar]
- Boyce, J.M.; Farrel, P.A.; Towle, D.; Fekieta, R.; Aniskiewicz, M. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device. Infect. Control Hosp. Epidemiol. 2016, 37, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedberg, C.E.; Walker, C.G.; Siede, W.; Wood, D.R.; Schultz, A.R.; Ellenberger, T. DNA Repair and Mutagenesis; ASM Press: Washington, DC, USA, 2006. [Google Scholar]
- Rastogi, R.P.; Richa; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzica Engineering Srl. R2S—Robot for Room Sanitization. Available online: https://www.r2s-robots.com/en/ (accessed on 15 November 2021).
- Chevrefils, G.; Caron, E.; Wright, H.; Sakamoto, G.; Payment, P.; Barbeau, B.; Cairns, B. UV dose required to achieve incremental log inactivation of bacteria, protozoa, and viruses. IUVA News 2006, 8, 38–45. [Google Scholar]
- Clauss, M. Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative bacteria and mold spores with 222 nm compared to 254 nm wavelength. Acta Hydrochim. Hydrobiol. 2006, 34, 525–532. [Google Scholar] [CrossRef]
- McKinney, C.W.; Pruden, A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ. Sci. Technol. 2012, 46, 13393–13400. [Google Scholar] [CrossRef] [PubMed]
- Giese, N.; Darby, J. Sensitivity of microorganisms to different wavelengths of UV light: Implications on modeling of medium pressure UV systems. Water Res. 2000, 34, 4007–4013. [Google Scholar] [CrossRef]
- Sheldon, J.L.; Kokjohn, T.A.; Martin, E.L. The effects of salt concentration and growth phase on MRSA solar and germicidal ultraviolet radiation resistance. Ostomy Wound Manag. 2005, 51, 36–38. [Google Scholar]
- Salcedo, I.; Andrade, J.A.; Quiroga, J.M.; Nebot, E. Photoreactivation and dark repair in UV-treated microorganisms: Effect of temperature. Appl. Environ. Microbiol. 2007, 73, 1594–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidari, A.; Sabbatini, S.; Bastianelli, S.; Pierucci, S.; Busti, C.; Bartolini, D.; Stabile, A.M.; Monari, C.; Galli, F.; Rende, M.; et al. SARS-CoV-2 Survival on Surfaces and the Effect of UV-C Light. Viruses 2021, 13, 408. [Google Scholar] [CrossRef] [PubMed]
Baseline | CFU at Seeding | Inactivation Test * CFU/Plate | Photoreactivation Test CFU/Plate | |
---|---|---|---|---|
S. aureus ATCC®25923TM | 2 × 104 | 1.4 × 104 ± 3.8×103 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 × 105 | 1.6 × 105 ± 5.9 × 104 | 0.3 ± 0.6 | 0.3 ± 0.6 | |
2 × 106 | 1.9 × 106 ± 5.7 × 105 | 1.3 ± 1.2 | 2.7 ± 4.6 | |
S. aureus MRSA | 2 × 104 | 2.2 × 104 ± 2.8 × 102 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 × 105 | 4.9 × 105 ± 9.3 × 104 | 2.0 ± 3.5 | 0.7 ± 0.6 | |
2 × 106 | 1.9 × 106 ± 8.4 × 105 | 1.3 ± 0.6 | 0.7 ± 1.2 | |
P. aeruginosa ATCC®27853TM | 2 × 104 | ND | ND | ND |
2 × 105 | 3.4 × 105 ± 9.8 × 104 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
2 × 106 | 1.9 × 106 ± 4.8 × 105 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
P. aeruginosa PAO-1 | 2 × 104 | 5.2 × 104 ± 2.8 × 103 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 × 105 | 2.8 × 105 ± 2.3 × 104 | 0.0 ± 0.0 | 0.7 ± 1.2 | |
2 × 106 | 2.7 × 106 ± 7.8 × 104 | 0.0 ± 0.0 | 2.0 ± 2.0 | |
K. pneumoniae KPC242 | 2 × 104 | 8.5 × 103 ± 2.2 × 103 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 × 105 | 1.5 × 105 ± 5.2 × 104 | 8.7 ± 9.0 | 1.7 ± 2.1 | |
2 × 106 | 1.8 × 106 ± 4.9 × 105 | 7.0 ± 11.2 | 16.7 ± 8.1 | |
K. pneumoniae KPC260 | 2 × 104 | 6.4 × 103 ± 2.7 × 102 | 0.0 ± 0.0 | 0.0 ± 0.0 |
2 × 105 | 2.3×105 ± 6.0 × 104 | 1.3 ± 1.2 | 1.3 ± 1.2 | |
2 × 106 | 2.2 × 106 ± 4.2 × 105 | 6.7 ± 11.5 | 14.7 ± 8.3 |
Irradiation (mJ/cm2) | UV-C Exposure CFU/Plate | Photoreactivation CFU/Plate | |
---|---|---|---|
S. aureus ATCC®25923TM | 0 | 1.6 × 105 ± 5.9 × 104 | |
4.33 | 269.3 ± 249.8 | 330.0 ± 304.1 | |
9.66 | 8.7 ± 15.0 | 0.0 ± 0.0 | |
12.68 | 0.3 ± 0.6 | 0.0 ± 0.0 | |
S. aureus MRSA | 0 | 4.9 × 105 ± 9.2 × 104 | |
4.33 | 2.0 ± 3.5 | 3.0 ± 5.2 | |
9.66 | 3.3 ± 5.8 | 0.0 ± 0.0 | |
12.68 | 0.3 ± 0.6 | 0.0 ± 0.0 | |
P. aeruginosa ATCC®27853TM | 0 | 3.3 × 105 ± 9.8 × 103 | |
4.33 | NT | NT | |
9.66 | NT | NT | |
12.68 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
P. aeruginosa PAO-1 | 0 | 2.8 × 105 ± 2.2 × 104 | |
4.33 | 0.0 ± 0.0 | 41.00 ± 69.3 | |
9.66 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
12.68 | 0.0 ± 0.0 | 0.0 ± 0.0 | |
K. pneumoniae KPC242 | 0 | 1.5 × 105 ± 5.2 × 104 | |
4.33 | 535.0 ± 379.6 | 592.7 ± 375.0 | |
9.66 | 1.3 ± 1.2 | 13.3 ± 15.3 | |
22.97 | 8.7 ± 9.0 | 1.7 ± 2.1 | |
K. pneumoniae KPC260 | 0 | 2.3 × 105 ± 6.0 × 104 | |
4.33 | 508.0 ± 426.14 | 567.67 ± 417.9 | |
9.66 | 1.3 ± 1.2 | 38.0 ± 32.7 | |
22.97 | 1.3 ± 1.2 | 1.3 ± 1.2 |
Exposure mJ/cm2 | CFU/ at Seeding | Sample Surface Irradiation | CFU/Plate After Exposure | |||
---|---|---|---|---|---|---|
Plastic | Glass | Steel | ||||
S. aureus ATCC25923 | 9.66 | 2.1 × 106 ± 2.7 × 105 | Aluminium covered | 2.1 × 106 ± 9.9 × 104 | 2.0 × 106 ± 2.0 × 105 | 2.0 × 106 ± 2.4 × 105 |
Uncovered | 16.0 ± 7.81 ** | 1.00 ± 1.00 ** | 15.33 ± 6.66 ** | |||
S. aureus MRSA881 | 9.66 | 2.2 × 106 ± 3.9 × 105 | Aluminium covered | 2.1 × 106 ± 2.8 × 105 | 2.2 × 106 ± 4.8 × 104 | 1.9 × 106 ± 2.3 × 105 |
Uncovered | 24.33 ± 4.73 * | 22.33 ± 12.70 * | 3.00 ± 1.73 * | |||
P. aeruginosa ATCC7853 | 9.66 | 1.7 × 106 ± 3.1 × 105 | Aluminium covered | 1.7 × 106 ± 1.1 × 105 | 1.6 × 106 ± 6.4 × 104 | 1.7 × 106 ± 1.1 × 104 |
Uncovered | 2.67 ± 1.53 * | 0.67 ± 1.15 * | 0.67 ± 0.58 * | |||
P. aeruginosa PAO1 | 9.66 | 1.9 × 106 ± 3.7 × 105 | Aluminium covered | 1.8 × 106 ± 8.5 × 104 | 1.9 × 106 ± 7.0 × 104 | 1.9 × 106 ± 1.5 × 105 |
Uncovered | 46.67 ± 48 * | 1.67 ± 0.58 * | 46.00 ± 10.15 * | |||
K. pneumoniae KPC 242 | 9.66 | 2.0 × 106 ± 4.1 × 105 | Aluminium covered | 2.0 × 106 ± 2.1 × 105 | 2.0 × 106 ± 1.6 × 105 | 2.0 × 106 ± 1.4 × 105 |
Uncovered | 19.67 ± 11.68 * | 5.67 ± 5.03 * | 58.33 ± 43.88 * | |||
K. pneumoniae KPC 260 | 9.66 | 2.4 × 106 ± 4.5 × 105 | Aluminium covered | 2.3 × 106 ± 2.8 × 105 | 2.2 × 106 ± 3.6 × 105 | 2.2 × 106 ± 4.0 × 105 |
Uncovered | 42.33 ± 34.49* | 0.00 ± 0.00 * | 30.67 ± 18.58 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, C.; Bartolini, D.; Corbucci, C.; Stabile, A.M.; Rende, M.; Gioiello, A.; Cruciani, G.; Mencacci, A.; Galli, F.; Pietrella, D. Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens. Int. J. Environ. Res. Public Health 2021, 18, 13019. https://doi.org/10.3390/ijerph182413019
Russo C, Bartolini D, Corbucci C, Stabile AM, Rende M, Gioiello A, Cruciani G, Mencacci A, Galli F, Pietrella D. Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens. International Journal of Environmental Research and Public Health. 2021; 18(24):13019. https://doi.org/10.3390/ijerph182413019
Chicago/Turabian StyleRusso, Carla, Desirée Bartolini, Cristina Corbucci, Anna Maria Stabile, Mario Rende, Antimo Gioiello, Gabriele Cruciani, Antonella Mencacci, Francesco Galli, and Donatella Pietrella. 2021. "Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens" International Journal of Environmental Research and Public Health 18, no. 24: 13019. https://doi.org/10.3390/ijerph182413019
APA StyleRusso, C., Bartolini, D., Corbucci, C., Stabile, A. M., Rende, M., Gioiello, A., Cruciani, G., Mencacci, A., Galli, F., & Pietrella, D. (2021). Effect of a UV-C Automatic Last-Generation Mobile Robotic System on Multi-Drug Resistant Pathogens. International Journal of Environmental Research and Public Health, 18(24), 13019. https://doi.org/10.3390/ijerph182413019