Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Selection Criteria
3. Results
3.1. Results in Patients with Dementia
3.2. Results in Patients with Multiple Sclerosis
3.3. Results in Patients with Stroke
3.4. Results in Patients with Spinal Cord Injury
4. Discussion
- Animals must be protected from abuse, discomfort, and stress, from a physical and mental point of view;
- Animals must be provided with adequate health care;
- Animals must have access to a quiet place where they can spend time away from their activities;
- Interactions with users should be structured such that the animal’s ability to serve as a therapeutic agent is maintained;
- A situation of abuse or stress will be never allowed (in this case, the session would be suspended immediately).
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dotti, J. Terapia e Animais; PC Editorial: São Paulo, Brazil, 2005. [Google Scholar]
- Levine, M.A. Investigating the origins of horse domestication. Equine Vet. J. Suppl. 1999, 28, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Dorothea, L.; Maello, N. Hippotherapy aids children with sensory and motor issues. Nurs. Health Source 2003, 33, 55–61. [Google Scholar]
- Rollin, B.E. Animal Rights and Human Morality; Prometheus Books: New York, NY, USA, 2006. [Google Scholar]
- International Association of Human-Animal Interaction Organizations (IAHAIO). The Triennial International Conference: Humans and Animals: The Inevitable Bond, Chicago, IL, USA; IAHAIO: Seattle, WA, USA, 2013; Available online: https://iahaio.org/wp/wp-content/uploads/2017/06/past-events-chicago-2013-abstracts.pdf (accessed on 10 May 2020).
- Filan, S.; Llewellwyn-Jones, R.H. Animal-assisted therapy for dementia: A review of the literature. Int. Psychogeriatr. 2006, 18, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Marks, G.; McVilly, K. Trained assistance dogs for people with dementia: A systematic review. Psychogeriatrics 2020, 20, 510–521. [Google Scholar] [CrossRef]
- Berry, A.; Borgi, M.; Terranova, L.; Chiarotti, F.; Alleva, E.; Cirulli, F. Developing effective animal-assisted intervention programs involving visiting dogs for institutionalized geriatric patients: A pilot study: AAI for institutionalized elderly. Psychogeriatrics 2012, 12, 143–150. [Google Scholar] [CrossRef]
- Marcus, D.A.; Bernstein, C.D.; Constantin, J.M.; Kunkel, F.A.; Breuer, P.; Hanlon, R.B. Animal-assisted therapy at an outpatient pain management clinic. Pain Med. 2012, 13, 45–57. [Google Scholar] [CrossRef]
- Vallejo, R. Introducción a la Psicopatología y a la Psiquiatría; Elsevier: Barcelona, Spain, 2006. [Google Scholar]
- Gutiérrez, G.; Granados, D.R.; Piar, N. Interacciones humano-animal: Características e implicaciones para el bienestar de los humanos. Revista Colombiana de Psicología 2007, 16, 163–184. [Google Scholar]
- Fine, A. Handbook on Animal Assited-Therapy, 5th ed.; Elsevier: San Diego, CA, USA, 2019. [Google Scholar]
- Klimova, B.; Toman, J.; Kuca, K. Effectiveness of the dog therapy for patients with dementia—A systematic review. BMC Psychiatry 2019, 19, 276. [Google Scholar] [CrossRef] [Green Version]
- Morrison, M.L. Health benefits of animal-assisted interventions. Complement. Health Pract. Rev. 2007, 12, 51–62. [Google Scholar] [CrossRef]
- Vaccari, A.M.H.; Alveida, F.A. A importância da visita de animais de estimação na recuperação de crianças hospitalizadas. Einstein 2007, 5, 111–116. [Google Scholar]
- Pereira, M.J.F.; Pereira, L.; Ferreira, M.L. Os benefícios da terapia assistida por animais: Uma revisão bibliográfica. Saúde Coletiva 2007, 4, 62–66. [Google Scholar]
- Gross-Naschert, E. Equinoterapia: La Rehabilitación por Medio del Caballo; Editorial Trillas: Mexico City, Mexico, 2006. [Google Scholar]
- Gonzáles, M.F. La hipoterapia, una alternativa en rehabilitacion. Rev. Iberoam. Rehab. Med. 1996, 49, 53–55. [Google Scholar]
- UCLA Health. Animal-Assisted Therapy Research Findings. Available online: https://www.Uclahealth.org/pac/animal-assisted-therapy (accessed on 8 May 2020).
- Anderson, W.P.; Reid, C.M.; Jennings, G.L. Pet ownership and risk factors for cardiovascular disease. Med. J. Aust. 1992, 157, 298–301. [Google Scholar] [CrossRef]
- Dembicki, D.; Anderson, J. Pet ownership may be a factor in improved health of the elderly. J. Nutr. Elder. 1996, 15, 15–31. [Google Scholar] [CrossRef]
- Friedmann, E.; Katcher, A.H.; Lynch, J.J.; Thomas, S.A. Animal companions and one-year survival of patients after discharge from a coronary care unit. Public Health Rep. 1980, 95, 307–312. [Google Scholar]
- Friedmann, E.; Thomas, S.A. Pet ownership, social support, and one-year survival after acute myocardial infarction in the Cardiac Arrhythmia Suppression Trial (CAST). Am. J. Cardiol. 1995, 76, 1213–1217. [Google Scholar] [CrossRef]
- Siegel, J.M. Stressful life events and use of physician services among the elderly: The moderating role of pet ownership. J. Personal. Soc. Psychol. 1990, 58, 1081–1086. [Google Scholar] [CrossRef]
- López, M. Efectos de la hipoterapia en posición sedente hacia adelante en un paciente con retraso psicomotor e hipotonía. Memorias 2011, 9, 130–137. [Google Scholar]
- Matsuzaki, M.; Honkura, N.; Ellis-Davies, G.C.; Kasai, H. Structural basis of long- term potentiation in single dendritic spines. Nature 2004, 429, 761–766. [Google Scholar] [CrossRef]
- Wingate, L. Feasibility of horseback riding as a therapeutic and integrative program for handicapped children. Phys. Ther. 1982, 62, 184–186. [Google Scholar] [CrossRef]
- Slim, M.; Lebib, S.; Dziri, C.; Ben Salah, F.Z.; Hammadi, M. La thérapie par le cheval dans la réadaptation des enfants handicapés mentaux Expérience Tunisienne. J. Réadaptat. Méd. 2007, 27, 115–127. [Google Scholar] [CrossRef]
- Gomez, O.I. Breve esquema del pensamiento de Winnicott sobre los fenómenos transicionales. Pensam. Psicol. 2006, 2, 13–16. [Google Scholar]
- Nagasawa, M.; Kikusui, T.; Onaka, T.; Ohta, M. Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction. Horm. Behav. 2009, 55, 434–441. [Google Scholar] [CrossRef]
- Odendaal, J.S.J.; Meintjes, R.A. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef]
- World Health Organization. Neurological Disorders: Public Health Challenges; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Latash, M.L.; Huang, X. Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 2015, 301, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Steele, K.M.; Rozumalski, A.; Schwartz, M.H. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev. Med. Child. Neurol. 2015, 57, 1176–1182. [Google Scholar] [CrossRef] [Green Version]
- De Morton, N.A. The PEDro scale is a valid measure of the metho-dological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Australian Physiotherapy Association. PEDro: Physiotherapy Evidence Database. 2009. Available online: http://www.pedro.org.au (accessed on 5 May 2021).
- Menna, L.F.; Santaniello, A.; Gerardi, F.; Sansone, M.; Di Maggio, A.; Di Palma, A.; Perruolo, G.; D’Esposito, V.; Formisano, P. Efficacy of animal-assisted therapy adapted to reality orientation therapy: Measurement of salivary cortisol: Efficacy of AAT adapted to ROT. Psychogeriatrics 2019, 19, 510–512. [Google Scholar] [CrossRef]
- Olsen, C.; Pedersen, I.; Bergland, A.; Enders-Slegers, M.-J.; Ihlebæk, C. Effect of animal-assisted activity on balance and quality of life in home-dwelling persons with dementia. Geriatr. Nurs. 2016, 37, 284–291. [Google Scholar] [CrossRef]
- Olsen, C.; Pedersen, I.; Bergland, A.; Enders-Slegers, M.-J.; Patil, G.; Ihlebaek, C. Effect of animal-assisted interventions on depression, agitation and quality of life in nursing home residents suffering from cognitive impairment or dementia: A cluster randomized controlled trial: Animal-assisted interventions for dementia patients. Int. J. Geriatr. Psychiatry 2016, 31, 1312–1321. [Google Scholar] [CrossRef]
- Friedmann, E.; Galik, E.; Thomas, S.A.; Hall, P.S.; Chung, S.Y.; McCune, S. Evaluation of a pet-assisted living intervention for improving functional status in assisted living residents with mild to moderate cognitive impairment: A pilot study: A pilot study. Am. J. Alzheimer’s Dis. Other Demen. 2015, 30, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Majić, T.; Gutzmann, H.; Heinz, A.; Lang, U.E.; Rapp, M.A. Animal-assisted therapy and agitation and depression in nursing home residents with dementia: A matched case-control trial. Am. J. Geriatr. Psychiatry 2013, 21, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Mossello, E.; Ridolfi, A.; Mello, A.M.; Lorenzini, G.; Mugnai, F.; Piccini, C.; Barone, D.; Peruzzi, A.; Masotti, G.; Marchionni, N. Animal-assisted activity and emotional status of patients with Alzheimer’s disease in day care. Int. Psychogeriatr. 2011, 23, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Moretti, F.; De Ronchi, D.; Bernabei, V.; Marchetti, L.; Ferrari, B.; Forlani, C.; Negretti, F.; Sacchetti, C.; Atti, A.R. Pet therapy in elderly patients with mental illness: Data from an Italian case-control study. Psychogeriatrics 2011, 11, 125–129. [Google Scholar] [CrossRef]
- Muñoz-Lasa, S.; Silanes, C.; Atín-Arratibel, M.Á.; Bravo-Llatas, C.; Pastor-Jimeno, S.; Máximo-Bocanegra, N. Effects of hippotherapy in multiple sclerosis: Pilot study on quality of life, spasticity, gait, pelvic floor, depression, and fatigue. Med. Clin. 2019, 152, 55–58. [Google Scholar] [CrossRef]
- Vermöhlen, V.; Schiller, P.; Schickendantz, S.; Drache, M.; Hussack, S.; Gerber-Grote, A.; Pöhlau, D. Hippotherapy for patients with multiple sclerosis: A multicenter randomized controlled trial (MS-HIPPO). Mult. Scler. 2018, 24, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, V.; Drache, M.; Schickendantz, S.; Gerber-Grote, A.; Schiller, P.; Pöhlau, D. Study of the effectiveness of hippotherapy on the symptoms of multiple sclerosis—Outline of a randomised controlled multicentre study (MS-HIPPO). Contemp. Clin. Trials Commun. 2016, 3, 6–11. [Google Scholar] [CrossRef] [Green Version]
- FUNDACIÓN MHG. Terapias Ecuestres. Available online: http://www.fundacionmhg.org/terapias-ecuestres (accessed on 10 July 2020).
- Hippotherapie. Available online: https://www.dkthr.de/de/therapeutisches-reiten/hippotherapie-dkthrr/ (accessed on 15 August 2020).
- Bunketorp-Käll, L.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Effects of horse-riding therapy and rhythm and music-based therapy on functional mobility in late phase after stroke. NeuroRehabilitation 2019, 45, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Bunketorp-Käll, L.; Lundgren-Nilsson, Å.; Nilsson, M.; Blomstrand, C. Multimodal rehabilitation in the late phase after stroke enhances the life situation of informal caregivers. Top. Stroke Rehabil. 2018, 25, 161–167. [Google Scholar] [CrossRef]
- Bunketorp-Käll, L.; Lundgren-Nilsson, Å.; Samuelsson, H.; Pekny, T.; Blomvé, K.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Long-term improvements after multimodal rehabilitation in late phase after stroke: A randomized controlled trial. Stroke 2017, 48, 1916–1924. [Google Scholar] [CrossRef]
- Beinotti, F.; Christofoletti, G.; Correia, N.; Borges, G. Effects of horseback riding therapy on quality of life in patients post stroke. Top. Stroke Rehabil. 2013, 20, 226–232. [Google Scholar] [CrossRef]
- Bunketorp-Käll, L.; Lundgren-Nilsson, Å.; Blomstrand, C.; Pekna, M.; Pekny, M.; Nilsson, M. The effects of a rhythm and music-based therapy program and therapeutic riding in late recovery phase following stroke: A study protocol for a three-armed randomized controlled trial. BMC Neurol. 2012, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Martin-Lemoyne, V.; Gagnon, D.H.; Routhier, F.; Poissant, L.; Tousignant, M.; Corriveau, H.; Vincent, C. To what extent can the use of a mobility assistance dog reduce upper limb efforts when manual wheelchair users ascend a ramp? J. Appl. Biomech. 2016, 32, 186–195. [Google Scholar] [CrossRef]
- Lechner, H.E.; Kakebeeke, T.H.; Hegemann, D.; Baumberger, M. The effect of hippotherapy on spasticity and on mental well-being of persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2007, 88, 1241–1248. [Google Scholar] [CrossRef]
- Santaniello, A.; Garzillo, S.; Cristiano, S.; Fioretti, A.; Menna, L.F. The Research of Standardized Protocols for Dog Involvement in Animal-Assisted Therapy: A Systematic Review. Animals 2021, 11, 2576. [Google Scholar] [CrossRef]
- Iannuzzi, D.; Rowan, A.N. Ethical issues in animal-assisted therapy programs. Anthrozoös 1991, 4, 154–163. [Google Scholar] [CrossRef]
- Yamamoto, K.C.M.; Silva, Y.E.T.; Costa, K.N.; Souza, M.S.; Silva, M.L.M.; Albuquerque, V.B.; Pinheiro, D.M.; Bernabéet, D.G. Avaliação fisiológica e comportamental de cães utilizados em terapia assistida por animais (TAA). Arq. Bras. Med. Vet. Zootec. 2012, 64, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Máximo, N.; Peñacola, C.; Ávila, A. Terapia Asistida con Animales. In Neurorrehabilitación: Métodos Específicos de Valoración y Tratamiento; Médica Panamericana: Madrid, Spain, 2012. [Google Scholar]
- Ministero della Salute. Interventi Assistiti con gli Animali (IAA). Linee Guida Nazionali. 2015. Available online: http://www.salute.gov.it/imgs/C_17_opuscoliPoster_276_allegato.pdf (accessed on 11 November 2021).
- Murthy, R.; Bearman, G.; Brown, S.; Bryant, K.; Chinn, R.; Hewlett, A.; Glenn George, B.; Goldstein, E.J.C.; Holzmann-Pazgal, G.; Rupp, M.E.; et al. Animals in Healthcare Facilities: Recommendations to Minimize Potential Risks. Infect. Control Hosp. Epidemiol. 2015, 36, 495–516. [Google Scholar] [CrossRef] [Green Version]
- Santaniello, A.; Sansone, M.; Fioretti, A.; Menna, L.F. Systematic Review and Meta-Analysis of the Occurrence of ESKAPE Bacteria Group in Dogs, and the Related Zoonotic Risk in Animal-Assisted Therapy, and in Animal-Assisted Activity in the Health Context. Int. J. Environ. Res. Public Health 2020, 17, 3278. [Google Scholar] [CrossRef]
- Wijker, C.; Leontjevas, R.; Spek, A.; Enders-Slegers, M.-J. Process evaluation of animal-assisted therapy: Feasibility and relevance of a dog-assisted therapy program in adults with autism spectrum disorder. Animals 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Pruskowski, K.A.; Gurney, J.M.; Cancio, L.C. Impact of the implementation of a therapy dog program on burn center patients and staff. Burns 2020, 46, 293–297. [Google Scholar] [CrossRef]
- Snipelisky, D.; Smidt, J.; Gallup, S.; Myrick, J.; Bauer, B.; Burton, M.C. Canine-Assisted Therapy in Hospitalized Patients Awaiting Heart Transplantation. South. Med. J. 2019, 112, 344–348. [Google Scholar] [CrossRef]
- Dell, C.; Chalmers, D.; Stobbe, M.; Rohr, B.; Husband, A. Animal-assisted therapy in a Canadian psychiatric prison. Int. J. Prison. Health 2019, 15, 209–231. [Google Scholar] [CrossRef]
- Moriello, G.; Terpstra, M.E.; Earl, J. Outcomes following physical therapy incorporating hippotherapy on neuromotor function and bladder control in children with Down syndrome: A case series. Phys. Occup. Ther. Pediatr. 2020, 40, 247–260. [Google Scholar] [CrossRef]
- Kang, K.D.; Jung, T.W.; Park, I.H.; Han, D.H. Effects of equine-assisted activities and therapies on the affective network of adolescents with internet gaming disorder. J. Altern. Complement. Med. 2018, 24, 841–849. [Google Scholar] [CrossRef]
- White-Lewis, S.; Johnson, R.; Ye, S.; Russell, C. An equine-assisted therapy intervention to improve pain, range of motion, and quality of life in adults and older adults with arthritis: A randomized controlled trial. Appl. Nurs. Res. 2019, 49, 5–12. [Google Scholar] [CrossRef]
- Schroeder, K.; Van Allen, J.; Dhurandhar, E.; Lancaster, B.; Heidari, Z.; Cazenave, K.; Boone, D.; Erdman, P. Riding into health: A case study on an Equine-assisted childhood obesity intervention. Int. J. Environ. Res. Public Health 2019, 16, 4835. [Google Scholar] [CrossRef] [Green Version]
- Hausberger, M.; Roche, H.; Henry, S.; Visser, E.K. A review of the human–horse relationship. Appl. Anim. Behav. Sci. 2008, 109, 1–24. [Google Scholar] [CrossRef]
- Nagasawa, M.; Mitsui, S.; En, S.; Ohtani, N.; Ohta, M.; Sakuma, Y.; Onaka, T.; Mogi, K.; Kikusui, T. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 2015, 348, 333–336. [Google Scholar] [CrossRef]
- Beck, L.; Madresh, E.A. Romantic partners and four-legged friends: An extension of attachment theory to relationships with pets. Anthrozoös 2015, 21, 43–56. [Google Scholar] [CrossRef]
- Hediger, K.; Meisser, A.; Zinsstag, J. Un marco de investigación de una sola salud para las intervenciones asistidas por animales. Int. J. Environ. Res. Public Health 2019, 16, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, J.; Beetz, A.; Schöberl, I.; Gee, N.; Kotrschal, K. Attachment security in companion dogs: Adaptation of Ainsworth’s strange situation and classification procedures to dogs and their human caregivers. Attach. Hum. Dev. 2019, 21, 389–417. [Google Scholar] [CrossRef] [PubMed]
Study Design | ||||||||
---|---|---|---|---|---|---|---|---|
First Author and Year | Neurological Pathology | Type of Study | Participants (N) | Study Group | Characteristics of the Intervention (Duration and Type of Animal) | Measures | Outcomes | PEDro Score |
Bunketorp-Käll et al. (2019) Part of clinical trial of Bunketorp-Kall et al. (2012) | Stroke | Randomised Longitudinal | N = 123 | Patients with stroke in late stage subjected to therapy based on rhythm and music (N = 41) vs. stroke patients subjected to hippotherapy (N = 41) vs. control group (N = 41) | 12 weeks (twice per week) Horses | 10 mWT; 6 MWT; M-MAS UAS | The group receiving hippotherapy completed the 10 mWT test faster compared to the control and had improvements in functional task performance. The effectiveness of music and rhythm therapy is less in the areas where it was improved with hippotherapy | 8/10 |
Menna et al. (2019) | Dementia (Alzheimer’s disease) | Randomised Longitudinal | N = 22 | Alzheimer’s patients subjected to AAT (N = 11) vs. control group (N = 11) | 3 months (12 meetings, once per week) Dogs | MMSE; GDS | Decrease in cortisol level in the group treated with TAA | 8/10 |
Muñoz-Lasa et al. (2019) | Multiple sclerosis | Non-randomised comparative open Longitudinal | N = 10 | Patients with multiple sclerosis subjected to hippotherapy (N = 6) vs. control group (N = 4) | 6 months Horses | T25-FW; Modified Ashworth Scale; BDI; MSQOL-54; FIS; KHQ; CVE20 | Statistically significant results in terms of spasticity, fatigue, general perception of health and quality of life. No significant results in: T25-FW, depression, constipation. | 6/10 8/10 |
Bunketorp-Käll et al. (2018) Use of Bunketorp-Käll et al.study (2017) | Stroke | Randomised Longitudinal | N = 106 | Patients with stroke in late stage subjected to therapy based on rhythm and music (N = 37) vs. stroke patients subjected to hippotherapy (N = 37) vs. control group (N = 32) | 12 weeks (twice per week) Horses | LISS | The LISS score changed when animal intervention was completed, and three months later, it was significantly higher in the caregivers in the intervention group than in the control group (especially in the ‘concerns’ section). It was not significant at six months. | |
Vermöhlen et al. (2018) Continuation of Wollenweber et al. study (2016) | Multiple sclerosis | Randomised Longitudinal | N = 70 | Multiple sclerosis patients who received hippotherapy plus standard treatment (N = 32) vs. control group (N = 38) | 12 weeks (once per week) Horses | BBS; FSS; NRS; VAS; MSQOL-54; EDSS | Balance improved in both groups (most notably in the intervention group). Fatigue and spasticity improved in the intervention group and did not change in the control group. Pain perception improved in both groups. | 9/10 |
Bunketorp-Käll et al. (2017) Continuation of Bunketorp et al. study (2012) | Stroke | Randomised Longitudinal | N = 123 | Patients with stroke in late stage subjected to therapy based on rhythm and music (N = 41) vs. stroke patients subjected to hippotherapy (N = 41) vs. control group (N = 41) | 12 weeks (twice per week) Horses | SIS; TUG; BBS; BDL-BS; Grippit (dynamometer); BNIS; LNS | Better results in the perception of recovery from stroke with rhythm and music therapy and horse-riding therapy than in the control group (they were maintained 6 months later). | 8/10 |
Wollenweber et al. (2016) | Multiple sclerosis | Randomised Longitudinal | N = 70 | Patients with multiple sclerosis subjected to hippotherapy as a complement to physiotherapy and pharmacotherapy (N = 35) vs. control group (N = 35) | 12 weeks (once per week) Horses | BBS; FSS; MSQoL-54; VAS; NRS | Study protocol on the effectiveness of hippotherapy in the symptoms of multiple sclerosis | 5/10 |
Olsen et al. (2016) | Dementia | Randomised Longitudinal | N = 80 | Patients with dementia subjected to animal-assisted activity (N = 42) vs. control group (N = 38) | 12 weeks (twice per week) Dogs | MMSE; BBS; QUALID | Balance improved in patients in the intervention group but was not statistically significant three months later. No effects on the quality of life of these patients were found. | 7/10 |
Martín-Lemoyne et al. (2016) | Spinal cord injury | Quasi-experimental analysis Cross-sectional study | N = 10 | Upper limb effort is quantified in patients with spinal cord injury when climbing a ramp with a wheelchair with and without the help of a mobility assistance dog. | Dogs | VAS; WUSPI; AIS | The involvement of an assistance dog allowed the speed when climbing the ramp to be significantly higher and allowed less effort from the upper limbs. Relative muscle utilization (anterior deltoids, biceps, and pectoralis major) and perceived effort in the upper limbs were significantly reduced. | 5/10 |
Friedmann et al. (2015) | Dementia (Alzheimer’s disease) | Randomised Longitudinal | N = 40 | Alzheimer’s patients subjected to assisted dog intervention (N = 22) vs. comparison group (N = 18) | 12 weeks (twice per week) Dogs | MMSE; AES; CSDD; CMAI; Barthel Index | Pet therapy had statistically significant results on physical, behavioural, and emotional function in patients. There were no significant differences in terms of medication use. | 7/10 |
Majic et al. (2013) | Dementia | Randomised Longitudinal | N = 65 | Patients with dementia subjected to animal-assisted activities (N = 30) vs. control group (N = 35) | 10 weeks (once per week) Dogs | MMSE; DSM-IV; CMAI; DMAS | Symptoms of depression and agitation were exacerbated in the control group. In the intervention group, they remained stable. | 7/10 |
Beinotti et al. (2013) | Stroke | Randomised Longitudinal | N = 24 | Patients with stroke subjected to horse-riding therapy (N = 12) vs. control group (N = 12). | 16 weeks (three times per week) Horses | SF-36; DSM-IV | The SF-36 score increased in the intervention group (in the areas of functional capacity, physical aspects and mental health, and no significant differences were shown in the subdomains of general health, vitality, and emotional aspects). The SF-36 score decreased in the control group. | 8/10 |
Bunketorp-Käll et al. (2012) | Stroke | Randomised Longitudinal | N = 120 | Patients with stroke in late stage subjected to therapy based on rhythm and music vs. stroke patients subjected to hippotherapyvs. control group | 12 weeks (twice per week) Horses | ICF; SIS; ADL; ARAT; BBS; BBL-BS; BBT; BNIS; EQ-5D; FIS; FES; GSES; LISS; Lisat-9; MADRS-S; M-MAS-UAS; NVLT; Ruff 2 and 7 SAT; SIS; SOC; TAP; TUG; VAS; WAIS; 6MWT; Grippit; Abilhand | Study protocol to assess whether rhythm and music therapy and TAA are effective in patients in the late stroke phase. | 5/10 |
Mosello et al. (2011) | Dementia (Alzheimer’s disease) | Non-randomised Longitudinal | N = 10 | 1. Habitual day-care activity 2. Control activity with stuffed animals 3. Assisted animal activity | 2 weeks before the intervention, 3 weeks of control activity with stuffed dogs, and 3 weeks of assisted activity with animals. Dogs | MMSE; SIB; ADL; CSDD; CMAI; NPI; OERS; ABMI; MoBOF | Significantly increased pleasure, motor activity and general alertness; and sadness decreased (three hours later) compared to the control group. The CMAI and CSDD scores were not significant. | 5/10 |
Moretti et al. (2011) | Dementia | Non-randomised Longitudinal | N = 21 | Patients with dementia subjected to animal therapy (N = 10) vs. control group (N = 11) | 6 weeks (once per week) Dogs | MMSE; GDS; ICD-10 | Decrease in GDS score in both groups. In the MMSE, they were not significant. Improvement in cognitive function in people who had animal therapy. | 7/10 |
Lechner et al. (2007) | Spinal cord injury | Randomised Crossover trial | N = 12 | The patients were divided into three groups: 1. Intervention H: hippotherapy 2. Intervention R: sitting astride a Bobath roll 3. Intervention S: sitting on a stool with a rocking chair. Every 4 weeks the intervention was changed | 4 weeks (twice per week) each intervention with rest period between each Horses | Ashworth Scale; VAS; Bf-S | Hippotherapy reduced short-term spasticity and temporarily improved mental well-being. Sitting on a Bobath roll astride (stretching) or sitting on a rocking seat (passive rhythmic movements) did not have the same effects. | 7/10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Martínez, M.d.C.; De la Plana Maestre, A.; Armenta-Peinado, J.A.; Barbancho, M.Á.; García-Casares, N. Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12882. https://doi.org/10.3390/ijerph182412882
Rodríguez-Martínez MdC, De la Plana Maestre A, Armenta-Peinado JA, Barbancho MÁ, García-Casares N. Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(24):12882. https://doi.org/10.3390/ijerph182412882
Chicago/Turabian StyleRodríguez-Martínez, María del Carmen, Alba De la Plana Maestre, Juan Antonio Armenta-Peinado, Miguel Ángel Barbancho, and Natalia García-Casares. 2021. "Evidence of Animal-Assisted Therapy in Neurological Diseases in Adults: A Systematic Review" International Journal of Environmental Research and Public Health 18, no. 24: 12882. https://doi.org/10.3390/ijerph182412882