A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis
Abstract
:1. Introduction
2. Review
2.1. Literature Review of Driver Reliability Factors
2.2. Aspects of Professional Driver Selection
3. Research into the Impact of Fatigue on the Behaviour of Professional Drivers
- Fatigue evaluation;
- Analysis of physiological changes during the work shift;
- Analysis of fatigue in the first (05:00–14:00) and second (14:00–23:00) work shifts;
- Analysis of the probability of alcoholic beverage consumption outside working hours.
- 17% at ages 23–40;
- 34% at ages 41–50;
- 35% at ages 51–60;
- 14% older than 61 years.
- H0, indicating that expert assessments are contradictory (i.e., the concordance factor is equal to zero);
- HA, indicating that expert reviews are similar (i.e., the concordance factor is not equal to zero).
4. Research into the Impact of Experience on the Behaviour of Professional Drivers
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-156568-4.
- Eurostat. Road Accident Fatalities—Statistics by Type of Vehicle. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_accident_fatalities_-_statistics_by_type_of_vehicle (accessed on 17 May 2021).
- Tolón-Becerra, A.; Lastra-Bravo, X.; Flores-Parra, I. National Road Mortality Reduction Targets under European Union Road Safety Policy: 2011–2020. Transp. Plan. Technol. 2014, 37, 264–286. [Google Scholar] [CrossRef]
- Adminaité-Fodor, D.; Jost, G. How to Improve the Safety of Goods Vehicles in the EU? European Transport Safety Council: Brussels, Belgium, 2020; p. 50. [Google Scholar]
- Osman Idris, A.; Habib, K.M.N.; Tudela, A.; Shalaby, A. Investigating the Effects of Psychological Factors on Commuting Mode Choice Behaviour. Transp. Plan. Technol. 2015, 38, 265–276. [Google Scholar] [CrossRef]
- Ellison, A.B.; Greaves, S.P.; Bliemer, M.C.J. Driver Behaviour Profiles for Road Safety Analysis. Accid. Anal. Prev. 2015, 76, 118–132. [Google Scholar] [CrossRef]
- Al-Shaebi, A.; Khader, N.; Daoud, H.; Weiss, J.; Yoon, S.W. The Effect of Forklift Driver Behavior on Energy Consumption and Productivity. Procedia Manuf. 2017, 11, 778–786. [Google Scholar] [CrossRef]
- Salmon, P.M.; Read, G.J.M.; Beanland, V.; Thompson, J.; Filtness, A.J.; Hulme, A.; McClure, R.; Johnston, I. Bad Behaviour or Societal Failure? Perceptions of the Factors Contributing to Drivers’ Engagement in the Fatal Five Driving Behaviours. Appl. Ergon. 2019, 74, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Delhomme, P.; Gheorghiu, A. Perceived Stress, Mental Health, Organizational Factors, and Self-Reported Risky Driving Behaviors among Truck Drivers Circulating in France. J. Saf. Res. 2021, in press. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wang, J.; Zhang, J. Study on Influencing Factors Selection of Driver’s Propensity. Transp. Res. Part D Transp. Environ. 2019, 66, 35–48. [Google Scholar] [CrossRef]
- Horswill, M.S.; Sullivan, K.; Lurie-Beck, J.K.; Smith, S. How Realistic Are Older Drivers’ Ratings of Their Driving Ability? Accid. Anal. Prev. 2013, 50, 130–137. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Wong, J.-T. Developing Effective Professional Bus Driver Health Programs: An Investigation of Self-Rated Health. Accid. Anal. Prev. 2011, 43, 2093–2103. [Google Scholar] [CrossRef]
- Peden, M. WHO—Work Programme. In Vsemirnyi Doklad o Preduprezhdenii Dorozho-Transportnogo Travmatizma; Ves’ mir: Moscow, Russia, 2004; ISBN 978-5-7777-0158-9. [Google Scholar]
- Kovácsová, N.; Lajunen, T.; Rošková, E. Aggression on the Road: Relationships between Dysfunctional Impulsivity, Forgiveness, Negative Emotions, and Aggressive Driving. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 286–298. [Google Scholar] [CrossRef]
- Stańczyk, T.; Jurecki, R. Budowa i Weryfikacja Modelu Kierowcy Do Analizy Sytuacji Przedwypadkowych. Czas. Tech. Mech. 2004, 101, 537–544. [Google Scholar]
- Łuczak, A.; Tarnowski, A. Validation of Selected Temperament and Personality Questionnaires for Diagnosing Drivers’ Aptitude for Safe Driving. A Polish Study. Accid. Anal. Prev. 2014, 70, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, E.R.; White, R.P. The Big Five Factors, Sensation Seeking, and Driving Anger in the Prediction of Unsafe Driving. Personal. Individ. Differ. 2006, 41, 903–915. [Google Scholar] [CrossRef]
- Shen, B.; Qu, W.; Ge, Y.; Sun, X.; Zhang, K. The Relationship between Personalities and Self-Report Positive Driving Behavior in a Chinese Sample. PLoS ONE 2018, 13, e0190746. [Google Scholar] [CrossRef]
- Wei, C.-H.; Lee, Y.; Luo, Y.-W.; Lu, J.-J. Incorporating Personality Traits to Assess the Risk Level of Aberrant Driving Behaviors for Truck Drivers. Int. J. Environ. Res. Public Health 2021, 18, 4601. [Google Scholar] [CrossRef]
- Linkov, V.; Zaoral, A.; Řezáč, P.; Pai, C.-W. Personality and Professional Drivers’ Driving Behavior. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 105–110. [Google Scholar] [CrossRef]
- Koppel, S.; Bugeja, L.; Hua, P.; Di Stefano, M.; Charlton, J.L. Issues Relating to the Efficacy of Mandatory Medical Reporting of Drivers with Medical and Other Fitness to Drive Relevant Conditions by Medical and Other Health Practitioners. J. Transp. Health 2019, 12, 237–252. [Google Scholar] [CrossRef]
- Mamcarz, P.; Droździel, P.; Madleňáková, L.; Sieradzki, A.; Droździel, P. Level of Occupational Stress, Personality and Traffic Incidents: Comparative Study of Public and Freight Transport Drivers. Transp. Res. Procedia 2019, 40, 1453–1458. [Google Scholar] [CrossRef]
- Michael, R.; Barraquer, R.I.; Rodríguez, J.; Tuñi i Picado, J.; Jubal, J.S.; González Luque, J.C.; van den Berg, T. Intraocular Straylight Screening in Medical Testing Centres for Driver Licence Holders in Spain. J. Optom. 2010, 3, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Hudák, M.; Madleňák, R. The Research of Driver Distraction by Visual Smog on Selected Road Stretch in Slovakia. Procedia Eng. 2017, 178, 472–479. [Google Scholar] [CrossRef]
- Serrano-Fernández, M.-J.; Boada-Grau, J.; Robert-Sentís, L.; Vigil-Colet, A. Predictive Variables for Musculoskeletal Problems in Professional Drivers. J. Transp. Health 2019, 14, 100576. [Google Scholar] [CrossRef]
- Bilban, M. Medical Driver Selection and Alcohol. Forensic Sci. Int. Suppl. Ser. 2009, 1, 38–42. [Google Scholar] [CrossRef]
- Rotter, T. Metodyka Psychologicznych Badań Kierowców: [Wersja Znowelizowana]; Ośrodek Informacji Naukowej i Wydawnictw ITS: Warszawa, Poland, 2003; ISBN 978-83-916576-9-0. [Google Scholar]
- Dee, T.S.; Grabowski, D.C.; Morrisey, M.A. Graduated Driver Licensing and Teen Traffic Fatalities. J. Health Econ. 2005, 24, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R. Towards a General Theory of Driver Behaviour. Accid. Anal. Prev. 2005, 37, 461–472. [Google Scholar] [CrossRef]
- Stern, H.S.; Blower, D.; Cohen, M.L.; Czeisler, C.A.; Dinges, D.F.; Greenhouse, J.B.; Guo, F.; Hanowski, R.J.; Hartenbaum, N.P.; Krueger, G.P.; et al. Data and Methods for Studying Commercial Motor Vehicle Driver Fatigue, Highway Safety and Long-Term Driver Health. Accid. Anal. Prev. 2019, 126, 37–42. [Google Scholar] [CrossRef]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Saeed, A.A.H.; Kineber, A.F. Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue. Int. J. Environ. Res. Public Health 2021, 18, 6752. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, J. Analysis of Commercial Truck Drivers’ Potentially Dangerous Driving Behaviors Based on 11-Month Digital Tachograph Data and Multilevel Modeling Approach. Accid. Anal. Prev. 2019, 132, 105256. [Google Scholar] [CrossRef]
- Lemke, M.K.; Hege, A.; Apostolopoulos, Y.; Sönmez, S. Hours-of-Service Compliance and Safety Outcomes among Long-Haul Truck Drivers. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 297–308. [Google Scholar] [CrossRef]
- Maynard, S.; Filtness, A.; Miller, K.; Pilkington-Cheney, F. Bus Driver Fatigue: A Qualitative Study of Drivers in London. Appl. Ergon. 2021, 92, 103309. [Google Scholar] [CrossRef]
- Guo, M.; Li, S.; Wang, L.; Chai, M.; Chen, F.; Wei, Y. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue. Int. J. Environ. Res. Public Health 2016, 13, 1174. [Google Scholar] [CrossRef]
- Lecocq, M.; Lantoine, P.; Bougard, C.; Allègre, J.-M.; Bauvineau, L.; Bourdin, C.; Marqueste, T.; Dousset, E. Neuromuscular Fatigue Profiles Depends on Seat Feature during Long Duration Driving on a Static Simulator. Appl. Ergon. 2020, 87, 103118. [Google Scholar] [CrossRef]
- Qin, P.; Wang, M.; Chen, Z.; Yan, G.; Yan, T.; Han, C.; Bao, Y.; Wang, X. Characteristics of Driver Fatigue and Fatigue-Relieving Effect of Special Light Belt in Extra-Long Highway Tunnel: A Real-Road Driving Study. Tunn. Undergr. Space Technol. 2021, 114, 103990. [Google Scholar] [CrossRef]
- Zhou, F.; Alsaid, A.; Blommer, M.; Curry, R.; Swaminathan, R.; Kochhar, D.; Talamonti, W.; Tijerina, L.; Lei, B. Driver Fatigue Transition Prediction in Highly Automated Driving Using Physiological Features. Expert Syst. Appl. 2020, 147, 113204. [Google Scholar] [CrossRef]
- Vanlaar, W.; Simpson, H.; Mayhew, D.; Robertson, R. Fatigued and Drowsy Driving: A Survey of Attitudes, Opinions and Behaviors. J. Saf. Res. 2008, 39, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Davidović, J.; Pešić, D.; Antić, B. Professional Drivers’ Fatigue as a Problem of the Modern Era. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 199–209. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; He, E.; Wang, H.; Wang, L. Recognizing Drowsiness in Young Men during Real Driving Based on Electroencephalography Using an End-to-End Deep Learning Approach. Biomed. Signal Process. Control 2021, 69, 102792. [Google Scholar] [CrossRef]
- Cori, J.M.; Turner, S.; Westlake, J.; Naqvi, A.; Ftouni, S.; Wilkinson, V.; Vakulin, A.; O’Donoghue, F.J.; Howard, M.E. Eye Blink Parameters to Indicate Drowsiness during Naturalistic Driving in Participants with Obstructive Sleep Apnea: A Pilot Study. Sleep Health 2021, 7, 644–651. [Google Scholar] [CrossRef]
- Soares, S.; Ferreira, S.; Couto, A. Drowsiness and Distraction While Driving: A Study Based on Smartphone App Data. J. Saf. Res. 2020, 72, 279–285. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Dickinson, L.M.; DiGuiseppi, C.; Lowenstein, S.R. Student Drivers: A Study of Fatal Motor Vehicle Crashes Involving 16-Year-Old Drivers. Ann. Emerg. Med. 2005, 45, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.R.; Gauld, C.; McKerral, A.; Pammer, K. Identifying Interactive Factors That May Increase Crash Risk between Young Drivers and Trucks: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 18, 6506. [Google Scholar] [CrossRef]
- Lam, L.T. Distractions and the Risk of Car Crash Injury. J. Saf. Res. 2002, 33, 411–419. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Ortiz, C.; Casares-López, M.; Castro-Torres, J.J.; Jiménez del Barco, L.; Anera, R.G. Impact of Age-Related Vision Changes on Driving. Int. J. Environ. Res. Public Health 2020, 17, 7416. [Google Scholar] [CrossRef] [PubMed]
- Musselwhite, C.B.A. Assessment of Computer-Based Training Packages to Improve the Safety of Older People’s Driver Behaviour. Transp. Plan. Technol. 2017, 40, 64–79. [Google Scholar] [CrossRef]
- Li, S.; Blythe, P.; Guo, W.; Namdeo, A. Investigating the Effects of Age and Disengagement in Driving on Driver’s Takeover Control Performance in Highly Automated Vehicles. Transp. Plan. Technol. 2019, 42, 470–497. [Google Scholar] [CrossRef]
- Claret, P.L.; del Castillo, J.D.; Moleón, J.J.; Cavanillas, A.B.; Martín, M.G.; Vargas, R.G. Age and Sex Differences in the Risk of Causing Vehicle Collisions in Spain, 1990 to 1999. Accid. Anal. Prev. 2003, 35, 261–272. [Google Scholar] [CrossRef]
- Brown, T.G.; Ouimet, M.C.; Eldeb, M.; Tremblay, J.; Vingilis, E.; Nadeau, L.; Pruessner, J.; Bechara, A. The Effect of Age on the Personality and Cognitive Characteristics of Three Distinct Risky Driving Offender Groups. Personal. Individ. Differ. 2017, 113, 48–56. [Google Scholar] [CrossRef] [Green Version]
- De Craen, S.; Twisk, D.A.M.; Hagenzieker, M.P.; Elffers, H.; Brookhuis, K.A. Do Young Novice Drivers Overestimate Their Driving Skills More than Experienced Drivers? Different Methods Lead to Different Conclusions. Accid. Anal. Prev. 2011, 43, 1660–1665. [Google Scholar] [CrossRef]
- Šeibokaitė, L.; Slavinskienė, J.; Arlauskienė, R.; Endriulaitienė, A.; Markšaitytė, R.; Žardeckaitė-Matulaitienė, K. How Congruent Can Human Attitudes, Intentions and Behaviour Be: The Case of Risky Driving Behaviour Among Lithuanian Novice Drivers. In Vision Zero for Sustainable Road Safety in Baltic Sea Region; Varhelyi, A., Žuraulis, V., Prentkovskis, O., Eds.; Lecture Notes in Intelligent Transportation and Infrastructure; Springer International Publishing: Cham, Switzerland, 2020; pp. 130–139. ISBN 978-3-030-22374-8. [Google Scholar]
- Öz, B.; Özkan, T.; Lajunen, T. Trip-Focused Organizational Safety Climate: Investigating the Relationships with Errors, Violations and Positive Driver Behaviours in Professional Driving. Transp. Res. Part F Traffic Psychol. Behav. 2014, 26, 361–369. [Google Scholar] [CrossRef]
- Koustanaï, A.; Van Elslande, P.; Bastien, C. Use of Change Blindness to Measure Different Abilities to Detect Relevant Changes in Natural Driving Scenes. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 233–242. [Google Scholar] [CrossRef]
- Bąk, J.; Buttler, I. Wpływ Alkoholu Na Sprawność Kierowcy. Kwart. Bezp. Ruchu Drog. 1994, 1, 8–11. [Google Scholar]
- Mallia, L.; Lazuras, L.; Violani, C.; Lucidi, F. Crash Risk and Aberrant Driving Behaviors among Bus Drivers: The Role of Personality and Attitudes towards Traffic Safety. Accid. Anal. Prev. 2015, 79, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.P.; Irwing, P. A General Factor of Personality in the Comrey Personality Scales, the Minnesota Multiphasic Personality Inventory-2, and the Multicultural Personality Questionnaire. Personal. Individ. Differ. 2009, 46, 437–442. [Google Scholar] [CrossRef]
- Măirean, C.; Havârneanu, C.-E. The Relationship between Drivers’ Illusion of Superiority, Aggressive Driving, and Self-Reported Risky Driving Behaviors. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 167–174. [Google Scholar] [CrossRef]
- Landay, K.; Wood, D.; Harms, P.D.; Ferrell, B.; Nambisan, S. Relationships between Personality Facets and Accident Involvement among Truck Drivers. J. Res. Personal. 2020, 84, 103889. [Google Scholar] [CrossRef]
- Bogdanovičius, Z.; Pikūnas, A.; Pečeliūnas, R. Eismo Dalyvių Psichofiziologija; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2007; ISBN 978-9955-28-185-6. [Google Scholar]
- Sagar, S.; Stamatiadis, N.; Wright, S.; Cambron, A. Identifying High-Risk Commercial Vehicle Drivers Using Sociodemographic Characteristics. Accid. Anal. Prev. 2020, 143, 105582. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1970; ISBN 978-0-85264-199-6. [Google Scholar]
- Sivilevičius, H. Application of Expert Evaluation Method to Determine the Importance of Operating Asphalt Mixing Plant Quality Criteria and Rank Correlation. Balt. J. Road Bridge Eng. 2011, 6, 48–58. [Google Scholar] [CrossRef]
- Chua, D.K.H.; Li, D. Key Factors in Bid Reasoning Model. J. Constr. Eng. Manag. 2000, 126, 349–357. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; Wiley: Hoboken, NJ, UA, 2020; ISBN 978-1-119-49247-4. [Google Scholar]
- Zaranka, J.; Pečeliūnas, R.; Matijošius, J. Analysis of the influence of fatigue on passenger transport drivers’ performance capacity. Transport 2012, 27, 351–356. [Google Scholar] [CrossRef]
- Zaranka, J. The Impact of Motor Vehicle Driver Behaviour Factors on Traffic Safety; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2012; ISBN 978-609-457-408-5. [Google Scholar]
Seniority Interval of Professional Drivers, Years | 16–20 | 21–25 | 26–30 | 31–35 | 36–40 | 41–45 |
---|---|---|---|---|---|---|
Probability p(x) | 0.492 | 0.518 | 0.447 | 0.405 | 0.5 | 0.611 |
n2 | xk1 | xk2 | xk3 | xk4 | xk5 | xk6 | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 18 | 324 | 5.832 × 103 | 1.05 × 105 | 1.9 × 106 | 3.401 × 107 | 8.856 | 159.4 | 2.869 × 103 | 0.492 |
2 | 23 | 529 | 1.217 × 104 | 2.798 × 105 | 6.436 × 106 | 1.48 × 108 | 11.92 | 274.1 | 5.497 × 103 | 0.452 |
3 | 28 | 784 | 2.195 × 104 | 6.147 × 105 | 1.721 × 107 | 4.819 × 108 | 12.52 | 350.5 | 9.814 × 103 | 0.447 |
4 | 33 | 1.089 × 103 | 3.594 × 104 | 1.186 × 106 | 3.9134 × 107 | 1.291 × 109 | 13.36 | 440.7 | 1.454 × 104 | 0.405 |
5 | 38 | 1.444 × 103 | 5.487 × 104 | 2.085 × 106 | 7.924 × 107 | 3.011 × 109 | 19 | 722 | 2.744 × 104 | 0.5 |
6 | 43 | 1.849 × 103 | 7.951 × 104 | 3.419 × 106 | 1.47 × 108 | 6.321 × 109 | 26.28 | 1.13 × 103 | 4.859 × 104 | 0.611 |
Σ | 183 | 6.019 × 103 | 2.103 × 105 | 7.689 × 106 | 2.909 × 108 | 1.129 × 1010 | 91.92 | 3.077 × 103 | 1.1 × 105 | 2.319 |
x2k | pk | p2 (x2k) | pk–p(x2k) | (pk–p(x2k))2 |
---|---|---|---|---|
18 | 0.492 | 0.501 | −8.9 × 10−3 | 7.921 × 10−5 |
23 | 0.452 | 0.497 | −4.53 × 10−2 | 2.052 × 10−3 |
28 | 0.447 | 0.458 | −1.08 × 10−2 | 1.166 × 10−4 |
33 | 0.405 | 0.433 | −2.82 × 10−2 | 7.952 × 10−4 |
38 | 0.5 | 0.472 | 2.83 × 10−2 | 8.009 × 10−4 |
43 | 0.611 | 0.624 | −1.26 × 10−2 | 1.587 × 10−4 |
Σ | – | – | – | 4.002 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaranka, J.; Pečeliūnas, R.; Žuraulis, V. A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis. Int. J. Environ. Res. Public Health 2021, 18, 12487. https://doi.org/10.3390/ijerph182312487
Zaranka J, Pečeliūnas R, Žuraulis V. A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis. International Journal of Environmental Research and Public Health. 2021; 18(23):12487. https://doi.org/10.3390/ijerph182312487
Chicago/Turabian StyleZaranka, Jurijus, Robertas Pečeliūnas, and Vidas Žuraulis. 2021. "A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis" International Journal of Environmental Research and Public Health 18, no. 23: 12487. https://doi.org/10.3390/ijerph182312487
APA StyleZaranka, J., Pečeliūnas, R., & Žuraulis, V. (2021). A Road Safety-Based Selection Methodology for Professional Drivers: Behaviour and Accident Rate Analysis. International Journal of Environmental Research and Public Health, 18(23), 12487. https://doi.org/10.3390/ijerph182312487