Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Measures
2.3.1. Demographic Information and Declaration of Diet
2.3.2. Assessment of Factors That May Influence Sleep Quality
2.3.3. Assessment of Dietary Habits
2.3.4. Assessment of the Prevalence of Sleeping Disorders
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Prevalence of Sleeping Disorders among Respondents
3.3. Prevalence of Sleeping Disorders Stratified by Diet Variables
3.4. Prevalence of Sleeping Disorders Stratified by Lifestyle Variables
3.5. Prevalence of Sleeping Disorders Stratified by BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-NCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 29 August 2021).
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; Chu, D.K.; Akl, E.A.; El-harakeh, A.; Bognanni, A.; et al. Physical Distancing, Face Masks, and Eye Protection to Prevent Person-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Reardon, S. Ebola’s Mental-Health Wounds Linger in Africa. Nature 2015, 519, 13–14. [Google Scholar] [CrossRef]
- Courtet, P.; Olié, E.; Debien, C.; Vaiva, G. Keep Socially (but Not Physically) Connected and Carry on: Preventing Suicide in the Age of COVID-19. J. Clin. Psychiatry 2020, 81, 20com13370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Zheng, L.; Wang, J.; Zhang, X.; Zhang, X.; Li, J.; Sun, Y. Epidemiological Evidence for the Link between Sleep Duration and High Blood Pressure: A Systematic Review and Meta-Analysis. Sleep Med. 2013, 14, 324–332. [Google Scholar] [CrossRef]
- Altman, N.G.; Izci-Balserak, B.; Schopfer, E.; Jackson, N.; Rattanaumpawan, P.; Gehrman, P.R.; Patel, N.P.; Grandner, M.A. Sleep Duration versus Sleep Insufficiency as Predictors of Cardiometabolic Health Outcomes. Sleep Med. 2012, 13, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattu, V.; Manzar, M.D.; Kumary, S.; Burman, D.; Spence, D.; Pandi-Perumal, S. The Global Problem of Insufficient Sleep and Its Serious Public Health Implications. Healthcare 2018, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, F.; Fuster, V.; Fernández-Alvira, J.M.; Fernández-Friera, L.; López-Melgar, B.; Blanco-Rojo, R.; Fernández-Ortiz, A.; García-Pavía, P.; Sanz, J.; Mendiguren, J.M.; et al. Association of Sleep Duration and Quality With Subclinical Atherosclerosis. J. Am. Coll. Cardiol. 2019, 73, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Mendoza, J.; He, F.; Calhoun, S.L.; Vgontzas, A.N.; Liao, D.; Bixler, E.O. Objective Short Sleep Duration Increases the Risk of All-Cause Mortality Associated with Possible Vascular Cognitive Impairment. Sleep Health 2020, 6, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Bertisch, S.M.; Pollock, B.D.; Mittleman, M.A.; Buysse, D.J.; Bazzano, L.A.; Gottlieb, D.J.; Redline, S. Insomnia with Objective Short Sleep Duration and Risk of Incident Cardiovascular Disease and All-Cause Mortality: Sleep Heart Health Study. Sleep 2018, 41, zsy047. [Google Scholar] [CrossRef] [PubMed]
- Tsara, V.; Amfilochiou, A.; Papagrigorakis, J.M.; Georgopoulos, D.; Liolios, E.; Kadiths, A.; Koudoumnakis, E.; Aulonitou, E.; Emporiadou, M.; Tsakanikos, M.; et al. Guidelines for Diagnosing and Treating Sleep Related Breathing Disorders in Adults and Children (Part 3: Obstructive Sleep Apnea in Children, Diagnosis and Treatment). Hippokratia 2010, 14, 57–62. [Google Scholar] [PubMed]
- Jun, J.C.; Chopra, S.; Schwartz, A.R. Sleep Apnoea. Eur. Respir. Rev. 2016, 25, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalewski, B.; Kamińska, A.; Syrico, A.; Kałdunska, A.; Pałka, Ł.; Sobolewska, E. The Usefulness of Modified Mallampati Score and CT Upper Airway Volume Measurements in Diagnosing OSA among Patients with Breathing-Related Sleep Disorders. Appl. Sci. 2021, 11, 3764. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Crawford, A.; Aggarwal, B. Plant-Based Diets: Reducing Cardiovascular Risk by Improving Sleep Quality? Curr. Sleep Med. Rep. 2018, 4, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P. Impact of Insufficient Sleep on Total Daily Energy Expenditure, Food Intake, and Weight Gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.; Xu, F.; Storfer-Isser, A.; Thomas, A.; Ievers-Landis, C.E.; Redline, S. The Association of Sleep Duration with Adolescents’ Fat and Carbohydrate Consumption. Sleep 2010, 33, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep Curtailment Is Accompanied by Increased Intake of Calories from Snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef]
- Lana, A.; Struijk, E.A.; Arias-Fernandez, L.; Graciani, A.; Mesas, A.E.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. Habitual Meat Consumption and Changes in Sleep Duration and Quality in Older Adults. Aging Dis. 2019, 10, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Krystal, A.D. Psychiatric Disorders and Sleep. Neurol. Clin. 2012, 30, 1389–1413. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Shapiro, C.M. Drug-Induced Sleep Disturbances: Focus on Nonpsychotropic Medications. Drug Saf. 1997, 16, 133–149. [Google Scholar] [CrossRef]
- Wądołowska, L.; Krusińska, B. Procedura Opracowania Danych Żywieniowych z Kwestionariusza KomPAN. Rozdz. 3. (w:) Kwestionariusz Do Badania Poglądów i Zwyczajów Żywieniowych Oraz Procedura Opracowania Danych. The Procedure of Reviewing Nutritional Data from the KomPAN Questionnaire. Chapter 3 in The Questionnaire for The Research of Nutritional Views and Habits, and The Procedure of Data Reviewing. Red. Gawęcki, J. Wyd. Komitetu Nauki o Żywieniu Człowieka Polskiej Akademii Nauk, Warszawa, 2014, 34–51. Available online: https://knozc.pan.pl/index.php?option=com_content&view=article&id=100&catid=36&Itemid=129&lang=pl&fbclid=IwAR3Q983fYSNb8OC5EQws2IUyxDV7dJq9O6RiqgKf2UsJ6gfcPenDSUtrlBA (accessed on 29 August 2021).
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. The Diagnostic Validity of the Athens Insomnia Scale. J. Psychosom. Res. 2003, 55, 263–267. [Google Scholar] [CrossRef]
- Walker, N.A.; Sunderram, J.; Zhang, P.; Lu, S.; Scharf, M.T. Clinical Utility of the Epworth Sleepiness Scale. Sleep Breath. 2020, 24, 1759–1765. [Google Scholar] [CrossRef]
- Marelli, S.; Castelnuovo, A.; Somma, A.; Castronovo, V.; Mombelli, S.; Bottoni, D.; Leitner, C.; Fossati, A.; Ferini-Strambi, L. Impact of COVID-19 Lockdown on Sleep Quality in University Students and Administration Staff. J. Neurol. 2021, 268, 8–15. [Google Scholar] [CrossRef]
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in Sleep Pattern, Sense of Time and Digital Media Use during COVID-19 Lockdown in Italy. J. Sleep Res. 2020, 29, e13074. [Google Scholar] [CrossRef]
- Papazisis, Z.; Nikolaidis, P.T.; Trakada, G. Sleep, Physical Activity, and Diet of Adults during the Second Lockdown of the COVID-19 Pandemic in Greece. Int. J. Environ. Res. Public Health 2021, 18, 7292. [Google Scholar] [CrossRef] [PubMed]
- Gruba, G.; Kasiak, P.S.; Gębarowska, J.; Adamczyk, N.; Sikora, Z.; Jodczyk, A.M.; Mamcarz, A.; Śliż, D. PaLS Study of Sleep Deprivation and Mental Health Consequences of the COVID-19 Pandemic among University Students: A Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2021, 18, 9581. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, N. Generalized Anxiety Disorder, Depressive Symptoms and Sleep Quality during COVID-19 Outbreak in China: A Web-Based Cross-Sectional Survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef]
- Mallampalli, M.P.; Carter, C.L. Exploring Sex and Gender Differences in Sleep Health: A Society for Women’s Health Research Report. J. Womens Health 2002 2014, 23, 553–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, F.J.; Young, T.B.; Lind, B.K.; Shahar, E.; Samet, J.M.; Redline, S.; D’Agostino, R.B.; Newman, A.B.; Lebowitz, M.D.; Pickering, T.G. Association of Sleep-Disordered Breathing, Sleep Apnea, and Hypertension in a Large Community-Based Study. Sleep Heart Health Study. JAMA 2000, 283, 1829–1836. [Google Scholar] [CrossRef] [Green Version]
- Bercea, R.M.; Mihaescu, T.; Cojocaru, C.; Bjorvatn, B. Fatigue and Serum Testosterone in Obstructive Sleep Apnea Patients. Clin. Respir. J. 2015, 9, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Viana, A.; Daflon, A.C.; Couto, A.; Neves, D.; de Araujo-Melo, M.H.; Capasso, R. Nocturnal Hypoxemia Is Associated With Low Testosterone Levels in Overweight Males and Older Men With Normal Weight. J. Clin. Sleep Med. 2017, 13, 1395–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Tang, T.; Wu, W.; Gu, L.; Du, J.; Zhao, T.; Zhou, X.; Wu, H.; Qin, G. Efficacy of Nasal Continuous Positive Airway Pressure on Patients with OSA with Erectile Dysfunction and Low Sex Hormone Levels. Respir. Med. 2016, 119, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Barrett-Connor, E.; Dam, T.-T.; Stone, K.; Harrison, S.L.; Redline, S.; Orwoll, E.; Osteoporotic Fractures in Men Study Group. The Association of Testosterone Levels with Overall Sleep Quality, Sleep Architecture, and Sleep-Disordered Breathing. J. Clin. Endocrinol. Metab. 2008, 93, 2602–2609. [Google Scholar] [CrossRef]
- Ferranti, R.; Marventano, S.; Castellano, S.; Giogianni, G.; Nolfo, F.; Rametta, S.; Matalone, M.; Mistretta, A. Sleep Quality and Duration Is Related with Diet and Obesity in Young Adolescent Living in Sicily, Southern Italy. Sleep Sci. 2016, 9, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, R.; Asakura, K.; Kobayashi, S.; Suga, H.; Sasaki, S. Low Intake of Vegetables, High Intake of Confectionary, and Unhealthy Eating Habits Are Associated with Poor Sleep Quality among Middle-Aged Female Japanese Workers. J. Occup. Health 2014, 56, 359–368. [Google Scholar] [CrossRef]
- Crawford, A.; Aggarwal, B.; Greenberger, H.M.; Liao, M.; St-Onge, M.-P. Association of Plant-Based Protein with Sleep Quality and Duration in Women. In Journal of General Internal Medicine; Springer: New York, NY, USA, 2017; Volume 32, p. S124. [Google Scholar]
- Cui, Y.; Niu, K.; Huang, C.; Momma, H.; Guan, L.; Kobayashi, Y.; Guo, H.; Chujo, M.; Otomo, A.; Nagatomi, R. Relationship between Daily Isoflavone Intake and Sleep in Japanese Adults: A Cross-Sectional Study. Nutr. J. 2015, 14, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Taylor, A.W.; Zhen, S.; Adams, R.; Appleton, S.; Shi, Z. Soy Isoflavone Intake and Sleep Parameters over 5 Years among Chinese Adults: Longitudinal Analysis from the Jiangsu Nutrition Study. J. Acad. Nutr. Diet. 2017, 117, 536–544.e2. [Google Scholar] [CrossRef]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet Promotes Sleep Duration and Quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef]
- Hajak, G.; Huether, G.; Blanke, J.; Blömer, M.; Freyer, C.; Poeggeler, B.; Reimer, A.; Rodenbeck, A.; Schulz-Varszegi, M.; Rüther, E. The Influence of Intravenous L-Tryptophan on Plasma Melatonin and Sleep in Men. Pharmacopsychiatry 1991, 24, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Paredes, S.D.; Marchena, A.M.; Bejarano, I.; Espino, J.; Barriga, C.; Rial, R.V.; Reiter, R.J.; Rodríguez, A.B. Melatonin and Tryptophan Affect the Activity-Rest Rhythm, Core and Peripheral Temperatures, and Interleukin Levels in the Ringdove: Changes with Age. J. Gerontol. A. Biol. Sci. Med. Sci. 2009, 64, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garau, C.; Aparicio, S.; Rial, R.V.; Nicolau, M.C.; Esteban, S. Age Related Changes in the Activity-Rest Circadian Rhythms and c-Fos Expression of Ring Doves with Aging. Effects of Tryptophan Intake. Exp. Gerontol. 2006, 41, 430–438. [Google Scholar] [CrossRef]
- Takaesu, Y.; Futenma, K.; Kobayashi, M.; Komada, Y.; Tanaka, N.; Yamashina, A.; Inoue, Y. A Preliminary Study on the Relationships between Diurnal Melatonin Secretion Profile and Sleep Variables in Patients Emergently Admitted to the Coronary Care Unit. Chronobiol. Int. 2015, 32, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Bravo, R.; Matito, S.; Cubero, J.; Paredes, S.D.; Franco, L.; Rivero, M.; Rodríguez, A.B.; Barriga, C. Tryptophan-Enriched Cereal Intake Improves Nocturnal Sleep, Melatonin, Serotonin, and Total Antioxidant Capacity Levels and Mood in Elderly Humans. Age 2013, 35, 1277–1285. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Xie, L.; Chen, X.; Kelly, B.C.; Qi, C.; Pan, C.; Yang, M.; Hao, W.; Liu, T.; Tang, J. Sleep Quality in Cigarette Smokers and Nonsmokers: Findings from the General Population in Central China. BMC Public Health 2019, 19, 808. [Google Scholar] [CrossRef] [Green Version]
- PhD, A.N.; Rhee, J.U.; Haynes, P.; Chakravorty, S.; Patterson, F.; Killgore, W.D.S.; Gallagher, R.A.; Hale, L.; Branas, C.; Carrazco, N.; et al. Smoke at Night and Sleep Worse? The Associations between Cigarette Smoking with Insomnia Severity and Sleep Duration. Sleep Health 2021, 7, 177–182. [Google Scholar] [CrossRef]
- Orzech, K.M.; Grandner, M.A.; Roane, B.M.; Carskadon, M.A. Digital Media Use in the 2 h before Bedtime Is Associated with Sleep Variables in University Students. Comput. Hum. Behav. 2016, 55, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-Analysis of Short Sleep Duration and Obesity in Children and Adults. Sleep 2008, 31, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Beydoun, M.A.; Wang, Y. Is Sleep Duration Associated with Childhood Obesity? A Systematic Review and Meta-Analysis. Obesity 2008, 16, 265–274. [Google Scholar] [CrossRef]
- Patel, S.R.; Hu, F.B. Short Sleep Duration and Weight Gain: A Systematic Review. Obesity 2008, 16, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, A.; Li, L. Sleep Duration and Overweight/Obesity in Children: Review and Implications for Pediatric Nursing. J. Spec. Pediatr. Nurs. 2012, 17, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipnis, V.; Midthune, D.; Freedman, L.; Bingham, S.; Day, N.E.; Riboli, E.; Ferrari, P.; Carroll, R.J. Bias in Dietary-Report Instruments and Its Implications for Nutritional Epidemiology. Public Health Nutr. 2002, 5, 915–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Variables | Number | Percentage |
---|---|---|---|
Gender | Male | 307 | 15.7 |
Female | 1649 | 84.3 | |
Diet | Vegetarian | 747 | 38.2 |
Non-vegetarian | 1209 | 61.8 | |
Age | 16–25 | 707 | 36.1 |
26–35 | 783 | 40.0 | |
36–45 | 360 | 18.4 | |
46–55 | 85 | 4.3 | |
56–65 | 16 | 0.8 | |
66–71 | 5 | 0.3 |
Sleeping Disorder | Variables | Total n (%) | Male n (%) | Female n (%) |
---|---|---|---|---|
Insomnia 1 | Yes | 961 (49.1%) | 133 (43.3%) | 828 (50.2%) |
No | 995 (50.9%) | 174 (56.7%) | 821 (49.8%) | |
Sleepiness 2 | Yes | 451 (23.1%) | 41 (13.4%) | 410 (24.9%) |
No | 1505 (76.9%) | 266 (86.6%) | 1239 (75.1%) |
Gender | Sleeping Disorder | Variables | Vegetarians n (%) | Non-Vegetarians n (%) | p-Value |
---|---|---|---|---|---|
Females | Insomnia 1 | Yes | 311 (46.6%) | 517 (52.7%) | 0.014 |
No | 357 (53.4%) | 464 (47.3%) | |||
Sleepiness 2 | Yes | 142 (21.3%) | 268 (27.3%) | 0.0052 | |
No | 526 (78.7%) | 713 (72.7%) | |||
Males | Insomnia 1 | Yes | 29 (36.7%) | 104 (45.6%) | ns |
No | 50 (63.3%) | 124 (54.4%) | |||
Sleepiness 2 | Yes | 7 (8.9%) | 34 (14.9%) | ns | |
No | 72 (91.1%) | 194 (85.1%) |
Category | Variables | Insomnia 1 | p-Value | Sleepiness 2 | p-Value | ||
---|---|---|---|---|---|---|---|
Yes n (%) | No n (%) | Yes n (%) | No n (%) | ||||
Vegetarian diet | Yes | 340 (45.5%) | 407 (54.5%) | 0.01 | 149 (20.0%) | 598 (80.0%) | 0.01 |
No | 621 (51.4%) | 588 (48.6%) | 302 (25.0%) | 907 (75.0%) | |||
Fruit and vegetables per day 3 | At least 1 | 828 (48.2%) | 888 (51.8%) | 0.03756 | 379 (22.1%) | 1337 (77.9%) | 0.006 |
Less than 1 | 133 (55.4%) | 107 (44.6%) | 72 (30.0%) | 168 (70.0%) | |||
Meat per day 4 | At least once | 335 (48.9%) | 350 (51.1%) | ns | 155 (22.6%) | 530 (77.4%) | ns |
Less than once | 626 (49.2%) | 645 (50.8%) | 296 (23.3%) | 975 (76.7%) | |||
Coffee 5 | Everyday | 51 (48.6%) | 54 (51.4%) | ns | 24 (22.9%) | 81 (77.1%) | ns |
Less often | 910 (49.2%) | 941 (50.8%) | 427 (23.1%) | 1424 (76.9%) | |||
Alcohol 6 | Everyday | 14 (51.9%) | 13 (48.1%) | ns | 5 (18.5%) | 22 (81.5%) | ns |
Less often | 947 (49.1%) | 982 (50.9%) | 446 (23.1%) | 1483 (76.9%) | |||
Smoking | Yes | 141 (58.0%) | 102 (42.0%) | 0.003 | 64 (26.3%) | 179 (73.7%) | ns |
No | 820 (47.9%) | 893 (52.1%) | 387 (22.6%) | 1326 (77.4%) | |||
Using electronic devices 1 h before sleep | Yes | 873 (50.8%) | 847 (49.2%) | 0.0001 | 407 (23.7%) | 1313 (76.3%) | ns |
No | 88 (37.3%) | 148 (62%) | 44 (18.6%) | 192 (81.4%) | |||
BMI [kg/m2] | <18.5 | 59 (53.6%) | 51 (46.4%) | 0.00458 | 22 (20.0%) | 88 (80.0%) | ns |
18.5–24.99 | 624 (46.7%) | 732 (53.3%) | 319 (23.2%) | 1055 (76.8%) | |||
>24.99 | 260 (55.1%) | 212 (44.9%) | 110 (23.3%) | 362 (76.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piekarska, M.; Pszczółka, M.; Parol, D.; Szewczyk, P.; Śliż, D.; Mamcarz, A. Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment. Int. J. Environ. Res. Public Health 2021, 18, 12285. https://doi.org/10.3390/ijerph182312285
Piekarska M, Pszczółka M, Parol D, Szewczyk P, Śliż D, Mamcarz A. Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment. International Journal of Environmental Research and Public Health. 2021; 18(23):12285. https://doi.org/10.3390/ijerph182312285
Chicago/Turabian StylePiekarska, Magda, Martyna Pszczółka, Damian Parol, Paweł Szewczyk, Daniel Śliż, and Artur Mamcarz. 2021. "Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment" International Journal of Environmental Research and Public Health 18, no. 23: 12285. https://doi.org/10.3390/ijerph182312285
APA StylePiekarska, M., Pszczółka, M., Parol, D., Szewczyk, P., Śliż, D., & Mamcarz, A. (2021). Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment. International Journal of Environmental Research and Public Health, 18(23), 12285. https://doi.org/10.3390/ijerph182312285