Is the Course of COVID-19 Different during Pregnancy? A Retrospective Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Inclusion and Exclusion Criteria
2.3. Clinical Course of Illness
2.4. Study Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Patients’ Characteristics and Comorbidities
4.2. Symptoms
4.3. Clinical Course Comparison
4.4. Laboratory Findings in Comparison with Non-Pregnant Group
5. Conclusions
5.1. Research Implications
5.2. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.C.; Geoghegan, L.; Arbyn, M.; Mohammed, Z.; McGuinness, L.; Clarke, E.L.; Wade, R.G. The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS ONE 2020, 15, e0234765. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.; Lewis, G.; David, A. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Vittori, A.; Lerman, J.; Cascella, M.; Gomez-Morad, A.D.; Marchetti, G.; Marinangeli, F.; Picardo, S.G. COVID-19 pandemic acute respiratory distress syndrome survivors: Pain after the storm? Anesth. Analg. 2020, 131, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Ñamendys-Silva, S.A. ECMO for ARDS due to COVID-19. Heart Lung 2020, 49, 348–349. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARSCoV-2 pneumonia in Wuhan, China: A singlecentered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 2011, 85, 4122–4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuyama, S.; Nagata, N.; Shirato, K.; Kawase, M.; Takeda, M.; Taguchi, F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 2010, 84, 12658–12664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo, P.; Valdés, M.; González, R.A. Molecular biology of coronaviruses: An overview of virus-host interactions and pathogenesis. Boletín Médico del Hospital Infantil de México 2021, 78, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines. (IL-1 and IL-6) and lung inflammation by Coronavirus-19. (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar] [CrossRef]
- McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020, 19, 102537. [Google Scholar] [CrossRef]
- Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Wei, J.; Huang, F.; Wang, F.; Li, G.; Li, Y.; Xing, L.; et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 2020, 146, 119–127.e4. [Google Scholar] [CrossRef]
- Domingo, P.; Mur, I.; Pomar, V.; Corominas, H.; Casademont, J.; de Benito, N. The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine 2020, 58, 102887. [Google Scholar] [CrossRef]
- Siston, A.M.; Rasmussen, S.A.; Honein, M.A.; Fry, A.M.; Seib, K.; Callaghan, W.M.; Louie, J.; Doyle, T.J.; Crockett, M.; Lynfield, R.; et al. Pandemic H1N1 Influenza in Pregnancy Working Group. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010, 303, 1517–1525. [Google Scholar] [CrossRef]
- Jamieson, D.J.; Honein, M.A.; Rasmussen, S.A.; Williams, J.L.; Swerdlow, D.L.; Biggerstaff, M.S.; Lindstrom, S.; Louie, J.K.; Christ, C.M.; Bohm, S.R.; et al. Novel Influenza A (H1N1) Pregnancy Working Group. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet 2009, 374, 451–458. [Google Scholar] [CrossRef]
- Hause, A.M.; Panagiotakopoulos, L.; Weintraub, E.S.; Sy, L.S.; Glenn, S.C.; Tseng, H.-F.; McNeil, M.M. Adverse Outcomes in Pregnant Women Hospitalized With Respiratory Syncytial Virus Infection: A Case Series. Clin. Infect. Dis. 2021, 72, 138–140. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet 2020, 395, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, L.-L.; Zhao, S.-J.; Kwak-Kim, J.; Mor, G.; Liao, A.-H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J. Reprod. Immunol. 2020, 139, 103122. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Jamieson, D.J.; Uyeki, T.M. Effects of Influenza on Pregnant Women and Infants. Am. J. Obstet. Gynecol. 2012, 207, S3–S8. [Google Scholar] [CrossRef]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef]
- Ferrer-Oliveras, R.; Mendoza, M.; Capote, S.; Pratcorona, L.; Esteve-Valverde, E.; Cabero-Roura, L.; Alijotas-Reig, J. Immunological and physiopathological approach of COVID-19 in pregnancy. Arch. Gynecol. Obstet. 2021, 304, 39–57. [Google Scholar] [CrossRef]
- Kazemi, S.N.; Hajikhani, B.; Didar, H.; Hosseini, S.S.; Haddadi, S.; Khalili, F.; Mirsaeidi, M.; Nasiri, M.J. COVID-19 and cause of pregnancy loss during the pandemic: A systematic review. PLoS ONE 2021, 16, e0255994. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2021. [Google Scholar] [CrossRef]
- Di Mascio, D.; Khalil, A.; Saccone, G.; Rizzo, G.; Buca, D.; Liberati, M.; Vecchiet, J.; Nappi, L.; Scambia, G.; Berghella, V.; et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2020, 2, 100107. [Google Scholar] [CrossRef]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The impact of COVID-19 on pregnancy outcomes: A systematic review and meta-analysis. Can. Med. Assoc. J. 2021, 193, E540–E548. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Graham, A.L. Potential maternal and infant outcomes from Coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses 2020, 12, 194. [Google Scholar] [CrossRef] [Green Version]
- Flisiak, R.; Horban, A.; Jaroszewicz, J.; Kozielewicz, D.; Pawłowska, M.; Parczewski, M.; Piekarska, A.; Tomasiewicz, K.; Zarębska-Michaluk, D. Management of SARS-CoV-2 infection: Recommendations of the Polish Association of Epidemiologists and Infectiologists as of March 31, 2020. Pol. Arch. Intern. Med. 2020, 130, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiro-Filho, E.A.; Yudin, M.; Farine, D. COVID-19 during pregnancy: An overview of maternal characteristics, clinical symptoms, maternal and neonatal outcomes of 10,996 cases described in 15 countries. J. Périnat. Med. 2020, 48, 900–911. [Google Scholar] [CrossRef]
- Littauer, E.Q.; Esser, E.S.; Antao, O.Q.; Vassilieva, E.V.; Compans, R.W.; Skountzou, I. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLOS Pathog. 2017, 13, e1006757. [Google Scholar] [CrossRef] [Green Version]
- Kumpel, B.M.; Manoussaka, M.S. Placental immunology and maternal alloimmune responses. Vox Sang. 2011, 102, 2–12. [Google Scholar] [CrossRef]
- Messerli, M.; May, K.; Hansson, S.; Schneider, H.; Holzgreve, W.; Hahn, S.; Rusterholz, C. Feto-maternal interactions in pregnancies: Placental microparticles activate peripheral blood monocytes. Placenta 2010, 31, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Wegmann, T.G.; Lin, H.; Guilbert, L.; Mosmann, T.R. Bidirectional cytokine interactions in the maternal-fetal relationship: Is successful pregnancy a TH2 phenomenon? Immunol. Today 1993, 14, 353–356. [Google Scholar] [CrossRef]
- Zambrano, L.D.; Ellington, S.; Strid, P.; Galang, R.R.; Oduyebo, T.; Tong, V.T.; Woodworth, K.R.; Nahabedian, J.F.; Azziz-Baumgartner, E.; Gilboa, S.M.; et al. Meaney-Delman D. CDC COVID-19 Response Pregnancy and Infant Linked Outcomes Team. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, 22 January–3 October 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1641–1647. [Google Scholar] [CrossRef]
- López, M.; Gonce, A.; Meler, E.; Plaza, A.; Hernández, S.; Martinez-Portilla, R.J.; Cobo, T.; García, F.; Roig, M.D.G.; Gratacós, E.; et al. Coronavirus Disease 2019 in Pregnancy: A Clinical Management Protocol and Considerations for Practice. Fetal Diagn. Ther. 2020, 47, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Stallings, E.; Bonet, M.; Yap, M.; Chatterjee, S.; Kew, T.; Debenham, L.; Llavall, A.C.; Dixit, A.; Zhou, D.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ 2020, 370, m3320. [Google Scholar] [CrossRef]
- Ellington, S.; Strid, P.; Tong, V.T.; Woodworth, K.; Galang, R.R.; Zambrano, L.D.; Nahabedian, J.; Anderson, K.; Gilboa, S.M. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, 22 January–7 June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Collier, A.-R.Y.; McMahan, K.; Yu, J.; Tostanoski, L.H.; Aguayo, R.; Ansel, J.; Chandrashekar, A.; Patel, S.; Bondzie, E.A.; Sellers, D.; et al. Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. JAMA 2021, 325, 2370. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.J.; Bordt, E.A.; Atyeo, C.; Deriso, E.; Akinwunmi, B.; Young, N.; Baez, A.M.; Shook, L.L.; Cvrk, D.; James, K.; et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women: A cohort study. Am. J. Obstet. Gynecol. 2021, 225, 303.e1–303.e17. [Google Scholar] [CrossRef]
- Zdanowski, W.; Waśniewski, T. Evaluation of SARS-CoV-2 Spike Protein Antibody Titers in Cord Blood after COVID-19 Vaccination during Pregnancy in Polish Healthcare Workers: Preliminary Results. Vaccines 2021, 9, 675. [Google Scholar] [CrossRef]
- Beharier, O.; Mayo, R.P.; Raz, T.; Sacks, K.N.; Schreiber, L.; Suissa-Cohen, Y.; Chen, R.; Gomez-Tolub, R.; Hadar, E.; Gabbay-Benziv, R.; et al. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. J. Clin. Investig. 2021, 131, e154834. [Google Scholar] [CrossRef]
- Atyeo, C.; Pullen, K.M.; Bordt, E.A.; Fischinger, S.; Burke, J.; Michell, A.; Slein, M.D.; Loos, C.; Shook, L.L.; Boatin, A.A.; et al. Compromised SARS-CoV-2-specific placental antibody transfer. Cell 2021, 184, 628–642.e10. [Google Scholar] [CrossRef]
- Douxfils, J.; Gillot, C.; De Gottal, É.; Vandervinne, S.; Bayart, J.-L.; Dogné, J.-M.; Favresse, J. Efficient Maternal to Neonate Transfer of Neutralizing Antibodies after SARS-CoV-2 Vaccination with BNT162b2: A Case-Report and Discussion of the Literature. Vaccines 2021, 9, 907. [Google Scholar] [CrossRef]
- Rothberger, G.D.; Valestra, P.K.; Knight, K.; Desai, A.K.; Calixte, R.; Shapiro, L.E. Low free T3 is associated with worse out- comes in patients in the ICU requiring invasive mechanical ventilation. J. Intensive Care Med. 2021, 36, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Shin, H.; Kim, W.; Lim, T.H.; Jang, B.; Cho, Y.; Choi, K.-S.; Ahn, C.; Lee, J.; Na, M.K. The value of decreased thyroid hormone for predicting mortality in adult septic patients: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 14137. [Google Scholar] [CrossRef] [Green Version]
- Akbaş, T.; Deyneli, O.; Sönmez, F.T.; Akalın, S. The pituitary-gonadal-thyroid and lactotroph axes in critically ill patients. Endokrynol. Pol. 2016, 67, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhou, W.; Xu, W.-W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid 2021, 31, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Speer, G.; Somogyi, P. Thyroid complications of SARS and coronavirus disease 2019 (COVID-19). Endocr. J. 2021, 68, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, H.; Hou, L.; Li, J.; Zheng, H.; Chi, R.; Lan, W.; Wang, D. Clinico-Radiological Features and Outcomes in Pregnant Women with COVID-19: Compared with Age-Matched Non-Pregnant Women (3/16/2020). Available online: https://ssrn.com/abstract=3556647 (accessed on 7 May 2021).
- Yanes-Lane, M.; Winters, N.; Fregonese, F.; Bastos, M.; Perlman-Arrow, S.; Campbell, J.R.; Menzies, D. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241536. [Google Scholar] [CrossRef] [PubMed]
- Sedgh, G.; Singh, S.; Hussain, R. Intended and unintended pregnancies worldwide in 2012 and recent trends. Stud. Fam. Plan. 2014, 45, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Kalafat, E.; Benlioglu, C.; O’Brien, P.; Morris, E.; Draycott, T.; Thangaratinam, S.; Le Doare, K.; Heath, P.; Ladhani, S.; et al. SARS-Cov-2 Infection in Pregnancy: A Systematic Review and Meta-Analysis Of Clinical Features And Pregnancy Outcomes. EClinicalMedicine 2020, 25, 100446. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I.; Kołomańska-Bogucka, D.; Tim, S.; Opławski, M. Pregnancy and Childbirth in the COVID-19 Era-The Course of Disease and Maternal-Fetal Transmission. J. Clin. Med. 2020, 9, 3749. [Google Scholar] [CrossRef]
- Martinez-Portilla, R.J.; Sotiriadis, A.; Chatzakis, C.; Torres-Torres, J.; Espino YSosa, S.; Sandoval-Mandujano, K.; Castro-Bernabe, D.A.; Medina-Jimenez, V.; Monarrez-Martin, J.C.; Figueras, F.; et al. Pregnant women with SARS-CoV-2 infection are at higher risk of death and pneumonia: Propensity score matched analysis of a nationwide prospective cohort (COV19Mx). Ultrasound Obstet. Gynecol. 2021, 57, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Tanacan, A.; Yazihan, N.; Erol, S.A.; Anuk, A.T.; Yetiskin, F.D.Y.; Biriken, D.; Ozgu-Erdinc, A.; Keskin, H.L.; Tekin, O.M.; Sahin, D. The impact of COVID-19 infection on the cytokine profile of pregnant women: A prospective case-control study. Cytokine 2021, 140, 155431. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Li, J.; Zhang, T.; Wang, D.; Lan, W. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J. Infect. 2020, 80, e7–e13. [Google Scholar] [CrossRef] [PubMed]
- Qiancheng, X.; Jian, S.; Lingling, P.; Lei, H.; Xiaogan, J.; Weihua, L.; Gang, Y.; Shirong, L.; Zhen, W.; GuoPing, X.; et al. Coronavirus disease 2019 in pregnancy. Int. J. Infect. Dis. 2020, 95, 376–383. [Google Scholar] [CrossRef]
- Novoa, R.H.; Quintana, W.; Llancarí, P.; Urbina-Quispe, K.; Guevara-Ríos, E.; Ventura, W. Maternal clinical characteristics and perinatal outcomes among pregnant women with coronavirus disease 2019. A systematic review. Travel Med. Infect. Dis. 2021, 39, 101919. [Google Scholar] [CrossRef]
- Stewart, T.; Lambourne, J.; Thorp-Jones, D.; Thomas, D. Implementation of early management of iron deficiency in pregnancy during the SARS-CoV-2 pandemic. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 60–62. [Google Scholar] [CrossRef]
- Metz, T.D.; Clifton, R.G.; Hughes, B.L.; Sandoval, G.; Saade, G.R.; Grobman, W.A.; Manuck, T.A.; Miodovnik, M.; Sowles, A.; Clark, K.; et al. Disease Severity and Perinatal Outcomes of Pregnant Patients With Coronavirus Disease 2019 (COVID-19). Obstet. Gynecol. 2021, 137, 571–580. [Google Scholar] [CrossRef]
- Jering, K.S.; Claggett, B.L.; Cunningham, J.W.; Rosenthal, N.; Vardeny, O.; Greene, M.F.; Solomon, S.D. Clinical Characteristics and Outcomes of Hospitalized Women Giving Birth With and Without COVID-19. JAMA Intern. Med. 2021, 181, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Servante, J.; Swallow, G.; Thornton, J.G.; Myers, B.; Munireddy, S.; Malinowski, A.K.; Othman, M.; Li, W.; O’Donoghue, K.; Walker, K.F. Haemostatic and thrombo-embolic complications in pregnant women with COVID-19: A systematic review and critical analysis. BMC Pregnancy Childbirth 2021, 21, 108. [Google Scholar] [CrossRef]
- Liu, P.P.; Blet, A.; Smyth, D.; Li, H. The science underlying COVID-19: Implications for the cardiovascular system. Circulation 2020, 142, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Bhatraju, P.K.; Ghassemieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020, 382, 2012–2022. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Kumar, A.; Patel, D.; Puri, R.; Kalra, A.; Kapadia, S.R.; Reed, G.W. Meta-analysis Comparing Outcomes in Patients with and Without Cardiac Injury and Coronavirus Disease 2019 (COVID 19). Am. J. Cardiol. 2021, 141, 140–146. [Google Scholar] [CrossRef] [PubMed]
hbd | n (%) |
---|---|
≤26 | 12 (23.08) |
17 | 1 (1.92) |
22 | 3 (5.77) |
24 | 2 (3.85) |
25 | 2 (3.85) |
26 | 4 (7.69) |
27–30 | 15 (28.85) |
27 | 4 (7.69) |
28 | 2 (3.85) |
29 | 6 (11.54) |
30 | 3 (5.77) |
31–33 | 8 (15.38) |
31 | 1 (1.92) |
32 | 4 (7.69) |
33 | 3 (5.77) |
34–36 | 15 (28.85) |
34 | 7 (13.46) |
35 | 6 (11.54) |
36 | 2 (3.85) |
≥37 | 2 (3.85) |
37 | 2 (3.85) |
Variable | Cases | Controls | p-Value | |
---|---|---|---|---|
Age (years) | N | 52 | 53 | 0.282 |
Mean ± SD | 31.9 ± 4.79 | 32.96 ± 5.22 | ||
Range | 22–40 | 23–45 | ||
hbd | N | 52 | 0 | |
Median (IQR) | 30 (7) | |||
Range | 17–37 | |||
Weight (kg) | N | 43 | 33 | 0.566 |
Median (IQR) | 77 (26) | 75 (27) | ||
Range | 54–130 | 52–120 | ||
Height (cm) | N | 43 | 33 | 0.415 |
Mean ± SD | 166.12 ± 5.83 | 167.21 ± 5.69 | ||
Range | 151–175 | 156–180 | ||
BMI (kg/m2) | N | 43 | 35 | 0.379 |
Median (IQR) | 28.36 (9.88) | 29.3 (7.71) | ||
Range | 20.82–45.91 | 18.59–45.17 |
Variable | Cases | Controls | p-Value (Pearson’s Chi-Square Test) | |
---|---|---|---|---|
Fatigue | no | 30 (57.69%) | 29 (54.72%) | 0.759 * |
yes | 22 (42.31%) | 24 (45.28%) | ||
Sputum | no | 49 (94.23%) | 47 (88.68%) | 0.488 ** |
yes | 3 (5.77%) | 6 (11.32%) | ||
Dyspnoea | no | 4 (7.69%) | 16 (30.77%) | 0.003 * |
yes | 48 (92.31%) | 36 (69.23%) | ||
Muscle aches | no | 30 (57.69%) | 31 (58.49%) | 0.934 * |
yes | 22 (42.31%) | 22 (41.51%) | ||
Sore throat | no | 46 (88.46%) | 47 (88.68%) | 0.972 * |
yes | 6 (11.54%) | 6 (11.32%) | ||
Headache | no | 40 (76.92%) | 35 (66.04%) | 0.217 * |
yes | 12 (23.08%) | 18 (33.96%) | ||
Chills | no | 50 (96.15%) | 52 (98.11%) | 0.618 ** |
yes | 2 (3.85%) | 1 (1.89%) | ||
Nausea | no | 50 (96.15%) | 48 (90.57%) | 0.437 ** |
yes | 2 (3.85%) | 5 (9.43%) | ||
Nasal discharge | no | 47 (90.38%) | 48 (90.57%) | 1 ** |
yes | 5 (9.62%) | 5 (9.43%) | ||
Diarrhoea | no | 50 (96.15%) | 44 (83.02%) | 0.028 * |
yes | 2 (3.85%) | 9 (16.98%) | ||
Smell and taste disorder | no | 38 (73.08%) | 34 (64.15%) | 0.325 * |
yes | 14 (26.92%) | 19 (35.85%) | ||
Cough | no | 5 (9.62%) | 20 (37.74%) | <0.001 * |
yes | 47 (90.38%) | 33 (62.26%) | ||
Fever | no | 19 (36.54%) | 19 (35.85%) | 0.941 * |
yes | 33 (63.46%) | 34 (64.15%) |
Variable | Cases | Controls | p-Value (Pearson’s Chi-Square Test) | |
---|---|---|---|---|
Preeclampsia | no | 50 (98.04%) | 53 (100%) | 0.490 ** |
yes | 1 (1.96%) | 0 (0%) | ||
Hypothyroidism | no | 33 (64.71%) | 44 (83.02%) | 0.033 * |
yes | 18 (35.29%) | 9 (16.98%) | ||
Hypertension | no | 45 (90.00%) | 43 (81.13%) | 0.202 * |
yes | 5 (10.00%) | 10 (18.87%) | ||
Diabetes mellitus | no | 42 (82.35%) | 47 (88.68%) | 0.359 * |
yes | 9 (17.65%) | 6 (11.32%) | ||
Asthma | no | 50 (96.15%) | 49 (92.45%) | 1 ** |
yes | 2 (3.85%) | 4 (7.55%) |
Severity | Cases | Controls | Total |
---|---|---|---|
1 mild illness | 9 (17.31%) | 6 (11.32%) | 15 |
2 moderate illness | 25 (48.08%) | 32 (60.38%) | 57 |
3 severe illness | 17 (32.69%) | 14 (26.42%) | 31 |
4 critical illness | 1 (1.92%) | 1 (1.89%) | 2 |
Total | 52 | 53 | 105 |
Variable | Cases | Controls | p-Value | |
---|---|---|---|---|
Length of hospitalisation (days) | N | 52 | 53 | 0.120 |
Median (IQR) | 8 (6) | 10 (5) | ||
Range | 2–23 | 3–25 | ||
Percentage of lung involvement on CT (%) | N | 34 | 46 | 0.539 |
Median (IQR) | 20 (11) | 27.5 (35) | ||
Range | 1–60 | 0–80 | ||
Time from the onset of SARS-CoV-2 symptoms (days) | N | 51 | 50 | 0.863 |
Median (IQR) | 7 (6) | 7.5 (6) | ||
Range | 1--23 | 2–21 | ||
Oxygen flow (L/min) | N | 52 | 53 | 0.009 |
Median (IQR) | 4 (4.5) | 2 (5) | ||
Range | 0–15 | 0–15 | ||
Variable | Cases | Controls | p-Value (Pearson’s Chi-Square Test) | |
Need for oxygen supplementation | no | 10 (19.23%) | 23 (43.40%) | 0.008 |
yes | 42 (80.77%) | 30 (56.60%) | ||
Need for invasive ventilation | no | 52 (100.00%) | 52 (98.11%) | 0.32 |
yes | 0 (0.00%) | 1 (1.89%) | ||
Need for high-flow oxygen therapy | no | 43 (82.69%) | 52 (98.11%) | 0.007 |
yes | 9 (17.31%) | 1 (1.89%) | ||
Need for ICU admission | no | 50 (96.15%) | 52 (98.11%) | 0.547 |
Variable | Cases | Controls | p-Value | |
---|---|---|---|---|
Hemoglobin (g/dL) | N | 52 | 53 | <0.001 |
Median (IQR) | 12 (1.1) | 13.3 (1.6) | ||
Range | 7.3–15 | 9–16.4 | ||
Leukocytes (×103/μL) | N | 52 | 53 | 0.012 |
Median (IQR) | 7.7 (3.23) | 6.37 (3.89) | ||
Range | 2.99–18.58 | 2.12–18.13 | ||
Lymphocytes (×103/μL) | N | 52 | 53 | 0.002 |
Median (IQR) | 0.97 (0.32) | 1.35 (0.92) | ||
Range | 0.6–2.65 | 0.32–3.23 | ||
Neutrophils (×103/μL) | N | 52 | 53 | <0.001 |
Median (IQR) | 5.8 (3.11) | 4.17 (2.98) | ||
Range | 2.16–16.77 | 1.21–14.89 | ||
Platelets (×103/μL) | N | 52 | 53 | 0.003 |
Median (IQR) | 184.5 (58.5) | 236 (104) | ||
Range | 34–444 | 0.32–475 | ||
AST—Aspartate aminotransferase (U/L) | N | 52 | 52 | 0.879 |
Median (IQR) | 28 (18.5) | 26.5 (26.5) | ||
Range | 9–263 | 0–211 | ||
APTT—activated partial thromboplastin time (s) | N | 49 | 40 | 0.318 |
Median (IQR) | 33.7 (5.5) | 32.45 (5.2) | ||
Range | 22.2–47 | 25.6–63.6 | ||
ALT—Alanine aminotransferase (U/L) | N | 50 | 52 | 0.10 |
Median (IQR) | 24 (24) | 25 (33.5) | ||
Range | 6–177 | 6–130 | ||
Bilirubin (mg/dL) | N | 49 | 40 | 0.16 |
Median (IQR) | 0.46 (0.51) | 0.36 (0.28) | ||
Range | 0.09–1.66 | 0.14–1.81 | ||
NT pro-BNP (pg/mL) | N | 44 | 34 | 0.006 |
Median (IQR) | 29.5 (39) | 69.5 (135) | ||
Range | 5–260 | 9–1109 | ||
Calcium (mmol/L) | N | 43 | 18 | 0.021 |
Mean ± SD | 2.16 ± 0.09 | 2.22 ± 0.1 | ||
Range | 1.86–2.41 | 2.05–2.48 | ||
CK—creatine kinase (U/L) | N | 50 | 31 | 0.653 |
Median (IQR) | 61.5 (69) | 60 (62) | ||
Range | 11–729 | 15–1019 | ||
CRP—C Reactive Protein (mg/L) | N | 52 | 53 | <0.001 |
Median (IQR) | 46.95 (52.4) | 18 (45.5) | ||
Range | 1.2–160 | 0.3–210.4 | ||
D-dimer (μg/L FEU) | N | 32 | 47 | <0.001 |
Median (IQR) | 1178 (515.5) | 624 (601) | ||
Range | 458–4235 | 211–6650 | ||
Ferritin (ng/mL) | N | 50 | 21 | 0.001 |
Median (IQR) | 83.5 (109) | 222 (204) | ||
Range | 13–450 | 0–699 | ||
Fibrinogen (mg/dL) | N | 50 | 20 | <0.001 |
Median (IQR) | 553 (225) | 363.5 (230.5) | ||
Range | 273–941 | 186–654 | ||
Glucose (mg/dL) | N | 41 | 24 | 0.421 |
Median (IQR) | 92 (17) | 94 (33) | ||
Range | 67–157 | 72–253 | ||
Potassium (mmol/L) | N | 52 | 50 | 0.163 |
Median (IQR) | 3.93 (0.64) | 4.02 (0.63) | ||
Range | 2.95–4.96 | 3.33–4.57 | ||
Creatinine (mg/dL) | N | 50 | 50 | <0.001 |
Median (IQR) | 0.52 (0.17) | 0.74 (0.18) | ||
Range | 0.19–0.9 | 0.51–1.7 | ||
LDH (U/L) | N | 50 | 42 | 0.782 |
Median (IQR) | 226.5 (91) | 237 (118) | ||
Range | 103–389 | 142–507 | ||
Magnesium (mg/dL) | N | 46 | 21 | <0.001 |
Median (IQR) | 1.74 (0.16) | 2.15 (0.45) | ||
Range | 1.41–3.43 | 1.7–2.71 | ||
Sodium (mmol/L) | N | 52 | 49 | <0.001 |
Median (IQR) | 138 (4) | 141 (3) | ||
Range | 134–144 | 120–147 | ||
Procalcitonin (ng/mL) | N | 51 | 47 | <0.001 |
Median (IQR) | 0.14 (0.19) | 0.06 (0.09) | ||
Range | 0.03–95.5 | 0.02–15 | ||
PT—Prothrombin time (s) | N | 51 | 42 | <0.001 |
Median (IQR) | 1 (0.08) | 1.17 (0.16) | ||
Range | 0.891.29 | 0.97–1.75 | ||
Urea (mg/dL) | N | 52 | 47 | <0.001 |
Median (IQR) | 11 (5) | 22 (11) | ||
Range | 4–20 | 12–75 | ||
Vitamin D3 25(OH) (ng/mL) | N | 45 | 24 | 0.776 |
Mean ± SD | 27.15 ± 10.82 | 28.08 ± 16.31 | ||
Range | 6.8–56.3 | 0–62.5 | ||
Anti-SARS-CoV-2 IgG (ELISA) (index) | N | 49 | 2 | 0.596 |
Median (IQR) | 3.8 (4.1) | 7.35 (7.7) | ||
Range | 1.8–78.1 | 3.5–11.2 | ||
Anti-SARS-CoV-2 IgA + IgM (ELISA) (index) | N | 49 | 2 | 0.056 |
Median (IQR) | 0.8 (2.8) | 21.85 (36.3) | ||
Range | 0.1–40 | 3.7–40 | ||
IL-6 (pg/mL) | N | 52 | 29 | <0.001 |
Median (IQR) | 26.5 (31.6) | 5.06 (7.79) | ||
Range | 1.5–113 | 0–70 | ||
Troponin I (ng/mL) | N | 52 | 31 | 0.071 |
Median (IQR) | 2.75 (2.15) | 1.80 (2.7) | ||
Range | 0–25 | 0–3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszewski, M.; Ziuzia-Januszewska, L.; Jakimiuk, A.A.; Wierzba, W.; Gluszko, A.; Zytynska-Daniluk, J.; Jakimiuk, A.J. Is the Course of COVID-19 Different during Pregnancy? A Retrospective Comparative Study. Int. J. Environ. Res. Public Health 2021, 18, 12011. https://doi.org/10.3390/ijerph182212011
Januszewski M, Ziuzia-Januszewska L, Jakimiuk AA, Wierzba W, Gluszko A, Zytynska-Daniluk J, Jakimiuk AJ. Is the Course of COVID-19 Different during Pregnancy? A Retrospective Comparative Study. International Journal of Environmental Research and Public Health. 2021; 18(22):12011. https://doi.org/10.3390/ijerph182212011
Chicago/Turabian StyleJanuszewski, Marcin, Laura Ziuzia-Januszewska, Alicja A. Jakimiuk, Waldemar Wierzba, Anna Gluszko, Joanna Zytynska-Daniluk, and Artur J. Jakimiuk. 2021. "Is the Course of COVID-19 Different during Pregnancy? A Retrospective Comparative Study" International Journal of Environmental Research and Public Health 18, no. 22: 12011. https://doi.org/10.3390/ijerph182212011
APA StyleJanuszewski, M., Ziuzia-Januszewska, L., Jakimiuk, A. A., Wierzba, W., Gluszko, A., Zytynska-Daniluk, J., & Jakimiuk, A. J. (2021). Is the Course of COVID-19 Different during Pregnancy? A Retrospective Comparative Study. International Journal of Environmental Research and Public Health, 18(22), 12011. https://doi.org/10.3390/ijerph182212011